
Vol.12 (2022) No. 6

ISSN: 2088-5334

Optimization of Mutation Testing Challenges to Fixing Faults

Sasa Ani Arnomo a,*, Noraini Binti Ibrahim b, Anggia Dasa Putri c, Ellbert Hutabri c
a Department of Information System, Universitas Putera Batam, Batam, Indonesia

b Faculty Sciences Computer and Technology Information, Universiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia
c Department of Informatics Engineering, Universitas Putera Batam, Batam, Indonesia

Corresponding author: *sasa@puterabatam.ac.id

Abstract— One of the challenges of mutation testing is fixing faults. In the debugging phase, all live mutants were repaired. Programs

need high mutation scores to be declared reliable program codes. Each mutation test can allow the identification of multiple mutants.

This is what confuses the faults fixing process. The objective of this research is to get the shortest route so that it can help in sorting the

mutant types during application improvement after testing. The optimization is needed considering the number of mutants in each

mutation testing. The problems related to optimization are very complex. It takes a suitable method to find the shortest path by paying

attention to each point. There are 30 projects chosen randomly. The operator mutations that are often killed when testing mutations

are AOIU and COI. The proposed optimization for mutant repair sequence is the ant colony system (ACS). The route selection using

the Ant Colony System algorithm resulted in route optimization of 1.528254. Meanwhile, if the genetic algorithm is used, the score is

1.767643. Optimization results are very helpful for developers in improving code in mutation testing. Research states the best order for

handling mutants using ACS. This research can be further developed with the addition of class-level mutant cases which are produced

using class mutation operators. Class mutation operators have different characteristics from traditional mutation operators. In

particular, it requires changes to the program structure, such as the definition of class variables.

Keywords— Fixing faults; mutation testing; optimization; ACS.

Manuscript received 19 Feb. 2021; revised 31 Jul. 2021; accepted 8 Sep. 2021. Date of publication 31 Dec. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Software testing is essential in creating high-quality

software [1]–[3]. There are many types of testing software

which include mutation testing. Mutation testing is a white

box software testing technique based on faults [4], [5], which

is used to assess the quality of a program's code. A number of

mutants will be generated when testing a source code. Each

mutant appears based on the manipulation of the original

program through a transformed mutation operator [6], [7].

Mutation testing executes the mutants from the imitation
program and determines whether the mutants can be killed.

The test case generates a different set of tests that can be run

to detect faults [8]. The results of the execution of an imitation

program get a different value from the results of the original

program execution, so it can be stated that the mutant status

is killed [9], [10]. If the execution value is the same, the

mutant is declared alive. Live mutants need to be evaluated

where the original program with the imitation program has the

same execution value even though they both have different

codes. After testing, the mutation score can be calculated

based on the number of live mutants and dead mutants. The

mutation score is used in the research discussion.
Mutation testing has problems with computational

costs[11]. This makes it possible to generate a large number

of mutants upon execution on a test suite. The cost of creating

the mutants and repairing the program is expensive.

Researchers have proposed many techniques to reduce their

costs[12], such as weak mutation testing [13], selective

mutation testing, high mutation testing, mutant relationship

redundancy[14], Model-based testing (MBT)[15],

classification, clustering, and the advantage of high fault

localization accuracy[16]. However, the cost of the mutation

process remains high. This study proposes how to optimize

the repair sequence of the mutants that have been detected.
The data was recapitulated based on the mutation score for

each mutant.

The mutant selection process is needed to measure the

representation of the important selected mutants. In selective

mutation testing, the selected mutants should represent all

mutants that appear in the test series[17]. It gave effectiveness

in testing capabilities that reveal the error code. Selecting

2438

mutants to subsets that inspire new test case designs is helpful

in mutation testing. Several algorithms were developed, such

as Evolutionary Mutation Testing (EMT) [18]. In general,

there are three categories of mutant selection techniques:

random-based mutant selection, operator-based mutant

selection, and element-based mutant selection.

Some researchers optimize the creation of test cases to

reduce costs using genetic algorithms[19]–[21]. Meanwhile,

this algorithm still needs to be studied further, whether it has

been presented in all mutants. An important step after

mutation testing is code correction. Thus, this research tries to
optimize the order of how mutant repair. Generally, mutation

testing takes a lot of time for the programmer. Many test cases

can be applied. Thus, testing gave rise to many mutants. This

requires extra handlers. The selection of mutants is one thing

that greatly affects the testing time and costs of mutation

testing. The optimization technique used in this case is the Ant

Colony System (ACS) algorithm. ACS found that the route

cost and time are less than other optimization methods[22].

Ant Colony System (ACS) is an algorithm based on the route

of the ants. In the ACS algorithm, the process of forming an

ant travel path is applied to find a solution to the optimization
problem. As a comparison of optimization, a genetic

algorithm is chosen. A genetic algorithm is a solution-seeking

technique that follows the natural selection of biological

evolution [23].

II. MATERIAL AND METHOD

A. Mutation Operator

The mutation operator is the rule for the changes that

produce mutants [24]. This change is intended to prove the

reliability of the program code. The mutation operator
demands the adjustment of the programming language written

on the program under test. This change can be the deletion,

insertion, or replacement of an operator from the program

statement. After the mutant is created, the original test suite

will execute all its test cases on the modified version of the

project [25]. Table 1 shows several types of mutation

operators that can be used for testing.

TABLE I
MUTATION OPERATOR TABLE

Code Mutation Operator

AOIS Arithmetic Operator Insertion Short-cut
AOIU Arithmetic Operator Insertion Unary
AORB Arithmetic Operator Mutation Operator Description
AORS Arithmetic Operator Replacement Short-Cut
ASRS Short-Cut Assignment Operator Replacement
COD Conditional Operator Deletion
COI Conditional Operator Insertion
COR Conditional Operator Replacement

IOD Overriding Method Deletion
JID Member Variable Initialization Deletion
JSI Static Modifier Insertion
JTD This Keyword Deletion
JTI This Keyword Insertion
LOI Logical Operator Insertion
OAN Argument Number Changed

B. Mutation score

Mutation score can indicate a low or high value. The

developer works hard to improve the program when the

mutation score is low. Where the test found many errors by

marking the number of mutants alive. A high mutation score

means that the program has a good test suite [22] and a good

code structure. The mutation score (MS) using the calculation

formula is as follows [6] [23]:

 MS = 100 * D / N (1)
Where N is the total of mutants; D is the number of killed

mutants. The high mutation score value is the mutation score

getting closer to 1. The test data set shows that most of the

mutants were killed.

C. Mutation testing challenge

Mutation testing has several research approaches. The

approach is a mutant generation, test generation and

execution, and Evaluation [20]. Figure 1 shows the mutation

testing challenge. The emphasis of the study is the

optimization of fixing the program through mutant sequences

were found.

Fig. 1 Mutation Testing Challenge

D. How the Ant Algorithm Works to Find the Optimal Path.

Ants can sense their complex environment in search of

food. Then the ants return to the nest through the path at the

mark of the pheromone substance left behind. Pheromones are

chemical substances that come from endocrine glands. The

process of pheromone inheritance is known as stigmergy. It is

marking an area to create a route to the nest. Another goal is

also to facilitate communication between ants and the colony.

The pheromone trail will evaporate and reduce its power of

attraction [26]. The longer it takes an ant to commute through

this path, the longer it is for the pheromone to evaporate. In
order for the ants to get the optimal path, several processes are

needed. The ACS pheromone control method focuses more

on developing and utilizing the best historical pathways than

2439

the Ant system. There are three main characteristics of ACS:

status transition rules, local pheromone update rules, and

global pheromone update rules.

E. Status transition rules

The state transition rule that applies to the first ACS is that

the ant placed at point t chooses to go to point v. Then it is

assigned a random fractional number q where 0≤q≤1. q0 is the

probability that the ants explored each stage. pk (t, v) is the
probability that ant k chooses to move from point t to point v.

When q ≤ q0, the selection of the point to be addressed uses

the following equation:

 ��
������ ��, �� = ����, ���. ����, ����� � = 1, 2, 3. . . " (1)

 # =
�$%����, ���. ����, �����& (2)

whereas if q> q0, the following equation is used:

 # = '(��, #� = �)�*,+��.�,�*,+�-�
∑ �)�*,/��.�,�*,/0�-�1023

 (3)

 ���, ��� = 4
5�6*789:�*,/0� (4)

Where (t, u) is a heuristic function that is chosen as the

inverse of the distance between points t and u. (t, u) is the

value of the pheromone trace at point (t, u).  is a parameter

that considers the relative importance of heuristic

information. The value for the parameter β is ≥ 0.

F. Local pheromone update rules

The ants' tour for a solution, but the ants also visit the

internodes and change the pheromone levels on them by

applying local pheromone renewal rules. The following

equations are used for local update updates:

 ���, #� ← �1 < =�. ���, #� > =. ∆���, #� (6)

 ∆���, #� = 4
@11.A (7)

Where Lnn is the length of the tour obtained; C is the

number of location points; ∆ τ is the change in pheromone. ρ

is the amount of pheromone evaporation coefficient with a

value of 0 to 1. Each ant's path can be different when the

pheromone evaporation takes a long time. It is possible to

come up with more alternative solutions. Thus, location

points that have previously been traversed by ant tourism can

be traversed by other ant tourism.

G. Global pheromone Update Rules

Pheromone points are updated by applying global

pheromone renewal rules. All tracks are recapitulated and

sorted based on the shortest length of the track. Global

pheromone renewal was carried out only in the shortest path

since the experiment began.

 ���, #� ← �1 < =�. ���, #� > =. ∆���, #� (8)

 ∆���, #� = BCDEF4
0 �G��, #� ∈ I�J� ����� (9)

t, v is 1/Lgb if the path (t, v) is the best route that has

been travelled and otherwise t, v 0. Lgb is the length of
the best tour globally since the start of the experiment. The

global pheromone update is intended to provide more

pheromones on shorter tours.

III. RESULT AND DISCUSSION

The reference point is the number of mutant operators.

Where one line of code can include several mutants. Projects

are taken randomly obtained on the internet. The ACS

algorithm requires data that contains the shortest distance
between the average scores for each operator mutation. ACS

is used to optimize the search for the shortest route. Figure 2

describes the mutation score from the mutant data. The

highest value identifies that many mutants were killed in the

mutation operator. In the sample program, as many as 30

source codes show that AOIU and COI have the highest

average scores.

Fig. 2 Mutation Operator Distribution

Figure 2 illustrates the distribution of mutation operators.

It shows that COI obtains the highest point. Operators with

high scores stated that many were killed during testing. The

next calculation is to get the temporary value (t, u) and the

probability value based on the starting point (t) to the next

untreated point (u). The temporary value is used to determine

the points that would be headed next.

 '��I�I�K���J ��, �� = �L�*,+��.�,�*,+�-�
∑ �L�*,/��.�,�*,/0�-�1023

 (10)

After completing the calculation process, a probability and
accumulative probability is obtained as shown in the table II.

TABLE II

PROBABILITY AND ACCUMULATIVE PROBABILITY

 Probability Accumulative probability

AORB 0,0000000 0,0000000
AORS 0,0000417 0,0000417
AOIU 0,0001758 0,0002175

AOIS 0,0073918 0,0076093
ROR 0,0002554 0,0078647
COR 0,0000324 0,0078971
COD 0,0000324 0,0079295
COI 0,0001175 0,0080470
LOI 0,9916805 0,9997275

ASRS 0,0000556 0,9997831
IOD 0,0000324 0,9998155
OAN 0,0000284 0,9998439

JTI 0,0000457 0,9998896
JTD 0,0000457 0,9999352
JSI 0,0000324 0,9999676
JID 0,0000324 1,0000000

2440

Table II is a table of assistance in recording probability

calculations and the accumulated probability that is useful for

choosing the next location. The highest probability value as a

target location is LOI. Optimization of mutation testing using

ACS produces the recommended route in table III.

TABLE III
RECOMMENDATION ACS ROUTE

Mutation Operator Track

AORB 0,002

LOI 0,020
AOIS 0,082
ROR 0,221
AOIU 0,027
COI 0,362

ASRS 0,022
JTI 0,000
JTD 0,011

AORS 0,033

COR 0,000
COD 0,429
IOD 0,000
JSI 0,000
JID 0,019

OAN 0,300
length of track 1,528

The route of fixing faults is shown in the flow graph in

Figure 3. The value of the furthest distance between mutants

was obtained from the mutant operator from COR to COD

with a value of 0.429. Meanwhile, the shortest distance

between mutants is ASRS-JTI, AORS-COR, COD-IOD, and

IOD-JSI.

Fig. 3 The Recommended Mutation Testing Route

The comparison between ACS Algorithm and Genetic

Algorithm (GA) has a difference of 0.239389. ACS obtains

the shortest distance with a value of 1.528254. Meanwhile,

the GA trajectory is 1.767643. the comparison of results and

paths between ACS and GA is shown in Table IV.

TABLE IV
OPTIMIZATION LENGTH COMPARISON

 ACS GA

Result 1,528254 1,767643

Path AORB -> LOI -> AOIS -> ROR

-> AOIU -> COI -> ASRS ->

 JTI -> JTD -> AORS

-> COR -> COD -> IOD -> JSI -

> JID -> OAN -> AORB

AORS -> AOIU ->

AOIS -> ROR -> COD

-> COI -> LOI ->

ASRS -> JTI -> JSI ->

JID

IV. CONCLUSIONS

The effectiveness of fixing faults is an important issue for

developers. This paper proposes an optimization using the ant

colony system algorithm method to solve the priority problem

of very many mutant sequences. This smart method can be

immediately applied to software testing. The route selection

using the Ant Colony System algorithm resulted in route
optimization of 1.528254. Meanwhile, if the genetic

algorithm is used, the score is 1.767643. Optimization results

are very helpful for developers in improving code in mutation

testing. Research states that the best order to handle mutants

arises from mutation carriers. The project is selected

randomly. Meanwhile, operator mutants that are often killed

when mutation testing are AOIU and COI. This research can

be further developed with the addition of class-level mutant

cases which are produced using class mutation operators.

Class mutation operators have different characteristics from

traditional mutation operators. In particular, it requires
changes to the program structure, such as the definition of

class variables.

 ACKNOWLEDGMENTS

This research was supported by Universiti Tun Hussein

Onn Malaysia (UTHM) and Universitas Putera Batam

Indonesia. Computer laboratories are available specifically

for the process of researching software testing, and hardware

and software can be used to achieve research objectives.

REFERENCES

[1] A. Aghamohammadi, S. H. Mirian-Hosseinabadi, and S. Jalali,

“Statement frequency coverage: A code coverage criterion for

assessing test suite effectiveness,” Inf. Softw. Technol., vol. 129, no.

September 2020, p. 106426, 2021.

[2] A. Mustafa, W. M. N. Wan-Kadir, and N. Ibrahim, “Comparative

evaluation of the state-of-art requirements-based test case generation

approaches,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 4–2 Special

Issue, pp. 1567–1573, 2017.

[3] F. F. Ismail, R. Razali, and Z. Mansor, “Considerations for cost

estimation of software testing outsourcing projects,” Int. J. Adv. Sci.

Eng. Inf. Technol., vol. 9, no. 1, pp. 142–152, 2019.

[4] P. Delgado-Pérez and F. Chicano, “An experimental and practical

study on the equivalent mutant connection: An evolutionary

approach,” Inf. Softw. Technol., vol. 124, no. April, 2020.

[5] X. Dang, X. Yao, D. Gong, T. Tian, and B. Sun, “Multi-Task

Optimization-Based Test Data Generation for Mutation Testing via

Relevance of Mutant Branch and Input Variable,” IEEE Access, vol.

8, pp. 144401–144412, 2020.

[6] P. Pinheiro et al., “Mutating code annotations: An empirical

evaluation on Java and C# programs,” Sci. Comput. Program., vol.

191, p. 102418, 2020.

[7] N. Gupta, A. Sharma, and M. K. Pachariya, “Multi-objective test suite

optimization for detection and localization of software faults,” J. King

Saud Univ. - Comput. Inf. Sci., no. xxxx, 2020.

[8] A. Usman, N. Ibrahim, and I. A. Salihu, “TEGDroid: Test case

generation approach for android apps considering context and GUI

events,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 1, pp. 16–23,

2020.

[9] S. A. Arnomo and N. Binti Ibrahim, “Priority path for mutant repairs

on mutation testing,” Proc. ICAITI 2019 - 2nd Int. Conf. Appl. Inf.

Technol. Innov. Explor. Futur. Technol. Appl. Inf. Technol. Innov., pp.

71–76, 2019.

[10] J. A. do Prado Lima and S. R. Vergilio, “A systematic mapping study

on higher order mutation testing,” J. Syst. Softw., vol. 154, pp. 92–109,

2019.

[11] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro,

“A systematic literature review of techniques and metrics to reduce the

cost of mutation testing,” J. Syst. Softw., vol. 157, p. 110388, 2019.

2441

[12] A. M. Kazerouni, J. C. Davis, A. Basak, C. A. Shaffer, F. Servant, and

S. H. Edwards, “Fast and accurate incremental feedback for students’

software tests using selective mutation analysis,” J. Syst. Softw., vol.

175, p. 110905, 2021.

[13] X. Yao, G. Zhang, F. Pan, D. Gong, and C. Wei, “Orderly Generation

of Test Data via Sorting Mutant Branches Based on Their Dominance

Degrees for Weak Mutation Testing,” IEEE Trans. Softw. Eng., vol.

5589, no. c, pp. 1–17, 2020.

[14] R. Gheyi et al., “Identifying method-level mutation subsumption

relations using Z3,” Inf. Softw. Technol., vol. 132, no. April 2020, p.

106496, 2021.

[15] L. Villalobos-Arias, C. Quesada-López, A. Martínez, and M. Jenkins,

“Evaluation of a model-based testing platform for Java applications,”

IET Softw., vol. 14, no. 2, pp. 115–128, 2020.

[16] H. Wang, B. Du, J. He, Y. Liu, and X. Chen, “IETCR: An Information

Entropy Based Test Case Reduction Strategy for Mutation-Based

Fault Localization,” IEEE Access, vol. 8, pp. 124297–124310, 2020.

[17] J. M. Zhang, L. Zhang, D. Hao, L. Zhang, and M. Harman, “An

empirical comparison of mutant selection assessment metrics,” Proc.

- 2019 IEEE 12th Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW

2019, pp. 90–101, 2019.

[18] L. Gutierrez-Madronal, A. Garcia-Dominguez, and I. Medina-Bulo,

“Combining Evolutionary Mutation Testing with Random Selection,”

2020 IEEE Congr. Evol. Comput. CEC 2020 - Conf. Proc., 2020.

[19] M. B. Bashir and A. Nadeem, “Improved Genetic Algorithm to

Reduce Mutation Testing Cost,” IEEE Access, vol. 5, no. c, pp. 3657–

3674, 2017.

[20] N. Jatana and B. Suri, “Particle Swarm and Genetic Algorithm applied

to mutation testing for test data generation: A comparative

evaluation,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 4, pp.

514–521, 2020.

[21] M. Nosrati, H. Haghighi, and M. Vahidi Asl, “Test data generation

using genetic programming,” Inf. Softw. Technol., vol. 130, no.

September, p. 106446, 2021.

[22] R. Jangra and R. Kait, “Analysis and comparison among Ant System;

Ant Colony System and Max-Min Ant System with different

parameters setting,” 3rd IEEE Int. Conf. , pp. 1–4, 2017.

[23] D. N. Mudaliar and N. K. Modi, “Design and Application of m-

Mutation Operator in Genetic Algorithm to Solve Traveling Salesman

Problem,” 8th Int. Conf. Comput. Power, Energy, Inf. Commun.

ICCPEIC 2019, pp. 94–96, 2019.

[24] Q. Zhu, A. Zaidman, and A. Panichella, “How to kill them all: An

exploratory study on the impact of code observability on mutation

testing,” J. Syst. Softw., vol. 173, p. 110864, 2021.

[25] Z. X. Lu, S. Vercammen, and S. Demeyer, “Semi-Automatic Test Case

Expansion for Mutation Testing,” VST 2020 - Proc. 2020 IEEE 3rd

Int. Work. Validation, Anal. Evol. Softw. Tests, pp. 1–7, 2020.

[26] N. Yang and Y. Shi, “Research on Tourist Route based on a Novel Ant

Colony Optimization Algorithm,” 2019 IEEE Int. Conf. Power, Intell.

Comput. Syst. ICPICS 2019, no. 3, pp. 160–163, 2019.

2442

