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Abstract— The most popular paradigm in BCIs is the steady-state visually evoked potential (SSVEP) due to their advantages, such as 

the high information transfer rate (ITR), the time spent on users in the training phase, and the capacity to discriminate each stimulus. 

One of the most influential factors in the ITR evaluation is the feature extraction methods since these can increase the accuracy. Here, 

we compare nine methods for the extraction of features from SSVEP signals to identify those with better performance, according to the 

time window (TW), its technology (equipment and number of nodes), and the value of ITR.  The study identifies two groups: the first 

one is characterized by presenting variations of correlated component analysis (CCA), which is highly used to increase the ITR due to 

its efficiency in classification and its capacity of response to reduction (TW), such as MsetCCA, IT-CCA, FBCCA; the second one are 

the representation special based methods that consider the non-linear nature of the electroencephalogram (EEG) signal such as TRCA, 

CORRCA, EMD, and VMD. The results show a considerable difference between these groups. The maximum ITR value for FBCCA 

was 117.75 [bits/min] in a TW of 1.25s, while the VMD method achieved 3120 [bits/min] in a TW of 1s, respectively. The comparison 

covers signals between 0.55 and 8 seconds, taking into account visual strain, the experimental environment, and other artifacts. 

Keywords— Steady-state visually evoked potential; brain-computer interfaces; information transfer rate; canonical correlation 

analysis; empirical mode decomposition. 
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I. INTRODUCTION

Controlling a device, robot, or another machine using only 
thoughts has been a fantastic notion that has long captured 
humanity's imagination and interest. In the last decade, this 
has become a proven reality by avoiding the conventional 
communication channels (i.e., muscles or speech) between 
the brain and a computer. A "Brain-Computer Interface 
(BCI)" gives the users an alternative communication channel 
linking their brains and external devices. The BCI allows the 
control of applications using brain signals without the 
requirement of using the peripheral nervous system, 
benefiting access to people with limited motor skills, and 
developing alternative access methods for healthy users [1]. 

In a BCI system, the user must generate mental activities 
to produce voluntary changes in brain signals. These activities 
can be exogenous or endogenous: the exogenous one depends 
on the electrophysiological activity evoked by external 
stimuli (for example, the P300, Visually Evoked Potential 

(VEP), and the Steady-State Visually Evoked Potentials 
(SSVEP)); the endogenous one depends on the capacity of the 
user to control his electrophysiological activity without the 
need for external stimulation [2]. 

The paradigm of SSVEP stands out for its minimal training 
capacity, robustness, high Information Transfer Rate (ITR), 
and high Signal to Noise Ratio (SNR) [3]. The SSVEP 
paradigm is a spontaneous response to visual stimuli with 
specific frequencies through the retina, which emits stimuli to 
the brain, generating a response with the same spectrum [4]. 
The stimulus normally appears in the occipital and parietal 
brain lobes, where it is possible to gather much evidence in a 
relatively short time [4]. 

BCI systems based on VEP or SSVEP stimuli have 
demonstrated successful integration from single or multi-
frequency coding. The user transmits different commands by 
switching their attention to different coded targets [5]. 
According to Scopus, In the last three years, from 14,016 
published works about Brain-Computer Interface, 1,088 
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corresponds to publications related to the SSVEP in the same 
period. Among the most common SSVEP signal detection 
techniques are the Canonical Correlation Analysis (CCA) and 
its variations and the Empirical Mode Decomposition (EMD). 

The SSVEP paradigm generally presents a stable spectrum 
property, which remains low due to the high probability of 
interfering with irrelevant noise or artifacts. Therefore, 
developing a high-performance BCI is important to obtain a 
high SSVEP frequency accuracy using a short time window 
(TW) [6]. The development of a BCI-SSVEP with a high ITR 
would benefit applications such as spelling. A spelling 
application seeks to reduce both the time it takes to identify a 
character and the visual fatigue, especially for people with 
verbal and motor communication disabilities. Besides, tools 
with high ITR would improve the decision-making 
mechanisms in the field of interactive entertainment. 

Fig. 1 shows a BCI's general structure based on the SSVEP 
paradigm. It can be divided into four phases: data acquisition, 
signal processing, classification, and end application. The 
acquisition of signals from a given piece of equipment 
corresponds to the first stage. The second and third stages 
depend on the selected paradigm's characteristics; thus, to 
better analyze a paradigm's performance, it is necessary to 
focus on either the second or the third stage. The fourth stage 
is the interaction with the user environment application or 
control stage. 

This paper presents a comparative analysis between the 
main feature extraction methods (second stage) considering 
the ITR metric. Besides, ITR is directly related to several 
study parameters and comparisons such as accuracy, the time 
window for target signal recognition, the technology used in 
BCI-SSVEP signal acquisition, and the number of channels. 
Section II provides the theoretical background of the state-of-
the-art feature extraction methods in the SSVEP paradigm. 
Section III shows the validation tools of the studied methods, 
performing comparison according to ITR and accuracy 
metrics, presenting a summary table with the proposed 
investigations' values and results. Finally, sections III and IV 
present the discussion and conclusions on ITR, channel 
optimization, and the methods studied. Fig. 2 shows a 
structural flowchart of the research methodology that covers 
the proposal of this work. 
 

 
Fig. 1  Structure of a BCI-SSVEP 

 
 Fig. 2 Flowchart of the research methodology 

II. MATERIAL AND METHODS 

SSVEP paradigm is a natural response of the brain 
produced when people keep their eyes fixed on a stimulus that 
changes at a constant frequency. An EEG equipment is 
responsible for capturing these stimuli to implement a BCI 
system [7]. A BCI system based on SSVEP shows many 
visual stimuli that change at targeted frequencies and are 
related to a command that needs to be executed. The BCI-
SSVEP must detect which stimulus people are observing and 
execute the command associated with that stimulus. 

Many of the SSVEP paradigm feature extraction methods 
identify the patterns that differentiate one stimulus from 
another, aiming to respond within a short time window with 
the highest possible accuracy. Although several feature 
extraction methods exist, this paper presents two groups: 
CCA with variations and spatial representation methods. 

 They have been most relevant in the last years to solve 
BCI-SSVEP. We also considered aspects such as equipment 
for acquiring EEG signals, ITR, and TW to compare these 
methods. 

A. Recognition of characteristics on SSVEP paradigm with 
CCA-based methods 

1) Canonical Correlation Analysis (CCA): CCA is a 
feature extraction technique generally applied in the 
frequency detection of SSVEP signals, based on statistical 
methods to determine the correlation of X  and Y  and their 
linear combinations. X  represents the multichannel SSVEP 
signals while Y indicates the reference signals, which will be 
sinusoidal waves with a specific frequency and some 
harmonics of these [8]. A couple of combinations x � X�W�, y � Y�W	 , known as canonical variables, are encountered 
applying CCA in the sets to maximize the correlation. CCA 
seeks to maximize the correlation of the x and y variables by 
calculating the weight vectors W� and W	 . The Y reference 
signals are based on several harmonic frequencies and a 
periodic component of the source of the flashing signal 
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displayed with the same frequency. Consequently, the Y 
signals are adjusted as: 

 
 �
⎝
⎜⎛

sin�2�����cos�2�����⋮sin�2�������cos�2�������⎠
⎟⎞ ;    � � "# , %# , ⋯ , '# (1) 

being ( the number of samples, ) the sampling frequency, ��  
the stimulus frequency, and ��  the harmonics [9]. The 
maximization of the correlation of the frequencies of the 
reference signals will become the target signal, as shown in 
the following expression: 

 * � max� -� ,   . � 1,2, … , 1 (2) 

where 1 is the maximum number of stimuli and -� represents 
the .th CCA coefficient [9]. 

2) Filter Bank Canonical Correlation Analysis (FBCCA): 

The FBCCA feature extraction method is a variation of the 
CCA technique that improves the frequency capture of 
SSVEP signals [10]. Fig. 3 shows the FBCCA method's 
scheme and its three main processes, which are described 
below. 

 
Fig. 3 Schematic diagram of the FBCCA technique for frequency 
identification of SSVEP signals [10] 

 
The first step is to perform a sub-band decomposition by 

analyzing a filter bank developed with multiple band-pass 
filters. The traditional CCA method is then individually 
utilized by correlating the stimulation frequencies set from 
reference signals to the sub-band components [10]. Thus, the 
method obtains a correlation vector 2 , with �  values as a 
function of each signal, as shown in the equation (3): 

 2�3, 4�� � 52�",  2�%, … , 2�67 (3) 

being 2�3, 4�� the vector correlation between the variables 4�, . � 1, 2, … , 1(maximum number of stimuli), and each 38 
sub-band, 9 � 1, 2, … , � . A weighted square sum of 
correlation values for all components of the sub-band (i.e., 2�",  2�%, … , 2�6) and the characteristics are calculated for the 
identification of the target: 
 

 2:� � ∑ <�9��2�8�68=" %
, (4) 

where n is the sub-band index; thus, the highest correlation 
will be considered the SSVEP target frequency [11]. 

3) Individual template based on CCA: Although the 
standard CCA method has demonstrated its strength in 
identifying SSVEP signals, the artificial reference signals 
rarely represent the EEG signals' real behavior. It is due to the 
absence of training or adjusting procedures based on the 
subjects. Therefore, CCA does not obtain good accuracy in 
SSVEP signal recognition, specifically in short-time 
windowing. The next three approaches show mechanisms to 
improve the performance through the intervention over the 
reference signals per stimuli. 

The IT-CCA focuses on optimizing the original base signal 
by extracting characteristics from the EEG data and adding 
them to the standard target signal [12]. The database of EEG 
signals consists of training data and test data. Thus, the 
individual template is obtained using the training data for each 
subject and stimulus signal. Then, .  EEG data tests are 
recorded for a single stimulus frequency; the .th EEG data is 
utilized as the training data. The template is generated by 
averaging the training signals, becoming the user's template 
for that specific frequency. 

The generated individual template is then added to 
standard reference signals improving the correlation with 
EEG signals. The optimized signal is shown as: 

 
 �
⎝
⎜⎜
⎛ sin�2�����cos�2�����⋮sin�2�������cos�2�������>9?@A@?BCD (EF-DC�E⎠

⎟⎟
⎞

 (10) 

Notice that there will be as many individual templates for 
each subject as the number of stimulus frequency [12]. 

4) MsetCCA: The multiset of canonical correlation 
analysis (MsetCCA) seeks to enhance the reference signals by 
identifying possible common characteristics of multiple tests 
at the same stimulus frequency. MsetCCA uses the 
MAXVAR approach to maximize the highest correlation 
matrix by providing an extension of the CCA technique 
applied to multiple sets. 

Let GH , @ � 1,2, … , � be several sets of random parameters 
with zero mean and unit variance, the MsetCCA objective 
function follows [13]: 

 
maxIJ ,…,IK 2 � ∑ LH'GHGM'LM6HNM

O. �. "6 ∑ LH'GHGM'LM � 16H=M  (5) 

By using the Lagrange multiplier method, the 
maximization at (5) can be transformed into the following 
generalized eigenvalue problem, as a function of equation (6): 

 �Q R S�B � 2SB (6) 

where: 

Q � TG"G"' ⋯ G"G6'⋮ ⋱ ⋮G6G"' ⋯ G6G6'
V,  
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S � TG"G"' ⋯ 0⋮ ⋱ ⋮0 ⋯ G6G6'
V, 

 B � TL"⋮L6
V  

The maximum global correlation between the canonical 
variables can be obtained by applying the given linear 
transformations as the eigenvector from the highest 
generalized eigenvalue [13]. 

5) Multilayer Correlation Maximization (MCM): A 
multi-layer correlation section (MCM) maximization is an 
architecture with three-levels developed to optimize the 
frequency comparisons by maximizing the correlation level 
by level [14]. MCM reduces common noise and improves 
performance even more of the MsetCCA for SSVEP signal 
identification. Each layer is explained below: 

- The first layer extracts information related to the 
frequency of the stimulus from the EEG samples. Thus, G",X , … , G6,X ∈ ℜ[\]  (^  channels and _  time points) 
with �  EEG samples recorded for �X  stimulus 
frequency. The initial level maximizes the correlation of 
each EEG sample and the sine-cosine reference signal, 
X , using CCA. The @ th sample of the set of linear 
transformations: 

 H̀,X � abH,X�"� , … , bH,X�c�  d e Q[ f c , (7) 

being bH,X�g�
the linear transformation corresponding to the Dth eigenvalue. Thus, the eigenvectors take the initial 

larger L-values, conserved to create the learned linear 
transformations. It is then used to implement spatial 
filtering: 

 ),...,2,1(,,,, NiXWS mi

T

mimi   (8) 

The spatial filtering method removes most of the 
redundant components present in EEG signals. Hence, 
the data )",X , )%,X , … , )6,X  e Qc f ]   identifies only the 
stimulus related to the target frequency. 

- The second layer extracts the common characteristics 
shared by the spatially filtered data, implemented 
through )H,X �@ � 1,2, … ��. Based on (5), a set of linear 
transformations B",X , … , B6,X  e Qc  is resolved to rise 
to the highest overall correlation between the canonical 
variants from the spatially filtered data. The optimized 
reference signal is built as: 

  TT

mN

T

mm zzZ ,,1 ,...,  (9) 

where hH,X �  BH,X' )H,X  for @ � 1, … , �  is the canonical 
variables (common characteristics) obtained through 
MsetCCA. 

- The set of reference signals are reoptimized in the third 
stage, maximizing the correlation between the optimized 
reference signal set iX  and the reference signal sine-
cosine 
X . CCA is implemented between iX and 
X to 
discover the set of linear transformations X̀j �a bkX�"�, … ,  bkX�c� d e Q6 f c  A linear ponderation of the 
reference optimized signals is established to extract the 
target stimuli' frequency with these linear 

transformations. Therefore, the reoptimized reference 
signal lX given at the target frequency �X is determined 
by: 

 lX �  m̀X'iX (10) 

B. Recognition of Characteristics on SSVEP Paradigm 
Based on Spatial Representation 

1) Task-related component analysis (TRCA): TRCA is a 
method where the learning of spatial filters for the extraction 
of task-related components allows maximizing the 
reproducibility during each period. Considering that the 
number of channels N associated with the time signals xn�t�,i � 1, … , N  containing k  blocks of the same task repeated 
during the intervals t ϵ 5ts, ts  t  T7 with k � 1, … , K, where T is the task duration interval. The output y�t� is a linearly 
weighted sum of the input signals. Fig 4 pictures the TRCA 
in a task-block. Thus, the method of the task-related 
component is calculated as: 

 4��� � ∑ <H3H���6H=" � <'3��� (11) 
 

 
Fig. 4  Diagram of TRCA. Multiple time series (left row) are summed with 
weights to give a single time course 4��� (right). The shaded area in the time 
series indicates task blocks of a single task. The weights, or coefficients, are 
determined to maximize the sum of correlations or covariances of 4��� 
between task blocks [15]. 

 
It is implicitly assumed that the objective signals result 

from the linearly weighted sum of the components linked to 
the task and those not linked. Therefore, the task's 
components can be recovered from the observed signals 
through the appropriated weighting. The optimized 
coefficients allow obtaining a task-related element's time 
profile with the maximum temporal similarity between its 
intervals [15]. 

2) Correlated component analysis (CORRCA): This 
method performs frequency detection using correlated 
component analysis. This method is used to obtain the highly 
correlated signal components from multiple EEG signals 
obtained from various experimental subjects. The CORRCA 
principle for the analysis between subjects can be applied to 
the BCI- SSVEP to obtain spatial filters. The linear 
combinations of the SSVEP data set are robust between trials. 
They are also highly correlated, i.e., they keep a maximum 
correlation between subjects. 

CORRCA is generally used for learning the spatial filters 
involving the training data and the stimulus frequencies of 
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each user. In this way, the projection signals are found using 
a single test and the reference signal, finding the correlation 
coefficient between them [16]. 

If G" ∈  ℝ[\6  and G% ∈  ℝ[\6  are multidimensional 
variables, where ^ represents the number of channels and � 
is the number of samples, the method tries to solve the weight 
vector < ∈ ℝ[\"  such that the resulting linear combination 3 � <'G"  and 4 � <'G%  show the maximum correlation 
[16]. 

2x � arg max{
3'4‖3‖‖4‖ 

 � C}~ FC3{ f��J�{�{��JJ{�{����{ (12) 
being 2x  the correlation coefficient and QHM � "6 �H�HM' , the 

covariance matrices of the sample, where @, � � 1,2.  From 
(12) is differentiated as a function of <, then the expression 
is equalized to zero and <'Q""< � <'Q%%<, from here the 
eigenvectors are found as follows:   

  �Q"% t Q%"�< � ��Q"" t Q%%�< (13) 

The maximum 2x corresponds to the leading eigenvector of  �Q"" t Q%%��"�Q"% t Q%"� which maximizes the correlation 
coefficient between  3  and 4 . In addition, the second 
strongest correlation is achieved by projecting the data 
matrices over the eigenvector corresponding to the second 
strongest eigenvalue, and so on progressively. 

3) Empirical Mode Decomposition (EMD) and Ensemble 

EMD: EMD is an adaptive method based on non-linear and 
non-stationary data-driven analysis. EMD could be 
experimentally decomposed into a residual element and the 
main forms called Intrinsic Mode Functions (IMFs). Equation 
(14) presents this approach, in which e�t�  is a temporal 
sequence, un�t�  specifies the IMF from 1  to N , and the 
residual iteration is r�t�. 

 E��� � ∑ BH��� t }���6H="  (14) 

IMFs show full and near-orthogonal oscillation signal 
variations to be used as baseline functions from the data. This 
technique has been widely used to analyze non-linear 
processes and variants in time, such as weather signals, 
natural phenomena, bio-signals, among others [17]. 

Also, the Ensemble EMD (EEMD) method was developed 
to solve the effect of mode mixing. Due to the intermittent 
signal, the mode blending problem in EMD computing 
produces strong alias in the IMFs. It could hide individual 
characteristics in the time-frequency domain. In several tests, 
the EEMD method includes several sets of white noise in the 
signal. As the added noise changes in each test, the resulting 
IMFs show no correlation with the respective IMFs from one 
test to another. Additional noise can be eliminated by 
averaging the IMFs collected from the various tests together 
[18]. 

The signal E��� in ��� trial can be obtained as follows: 

 EM��� � E��� t C�<M�9�,   for � � 1, . . . � (15) 

being <M�9� the white noise in ��� trial with unit variance 
and C� amplitude. The average .�� B����������� is defined as: 

 B����������� � "6 ∑ B�M6M   (16) 

4) Variational Mode Decomposition (VMD): It is a 
method that consists of decomposing a multi-component 
signal into Intrinsically Band Limited Mode Functions 
(BLIMFs) of the input signal into sub-signals known as: 

 B� �  ����� cos�∅����� (17) 

being ∅�� (t) the phase, Ak the amplitude and �̀ � ∅�� (t) the 
instantaneous frequency, respectively. 

The VMD model's construction is based on three signal 
processing tools: Hilbert transformation, Wiener filtering, and 
frequency matching. The VMD consists of decomposing an 
input signal into K sub-signals (modes) denoted as B�  and 
each one of these is compact around a central <� pulse. The 
restricted variation model built by the VMD [19] is described 
as: 

 min����.�{�� �∑ ��� ������ t M��� ∗ B����� E�M{���%��=" �  (18) 

  O. �.   ∑ B� � ���="  (19) 

Thus, to build the model, we first use the Hilbert transform 
to calculate in each mode B� as an analytical signal and obtain 
the one-sided frequency spectrum. Later, we multiply by EM{��  to change the frequency spectrum of the baseband mode. 
Finally, to estimate the bandwidth, we calculate the mean of 
the square L2-gradient rule. To convert the restricted variation 
problem into an unrestricted variation problem, the increased 
Lagrangian L is implemented [19]: 

 

���B��, �<��, �� � �   ¡¢� £¤¥��� t ���¦
�∗ B����§ E�M{��¡%

% 
t‖���� R ∑ B����� ‖%% t 〈����, ���� R ∑ B����� 〉 (20) 
 
The minimization problem is finding the seat of the 

increased Lagrangian � in a series of iterative sub-signals and 
central pulsations, as shown in (20). 

III. RESULTS AND DISCUSSION 

A. Parameters 

Table I shows some studies about the performance of different 
SSVEP detection methods. Here ª«  is the number of 
channels from the EEG device, ¬®  is the number of 
experimental subjects, and ¯°  is the number of stimuli 
(targets). Although the studies considered various metrics to 
evaluate and compare their performance, the most widely 
used are ITR and accuracy. 

Accuracy is the proportion of correct recognitions to the 
total number of experiments used. On the other hand, the ITR 
is shown in equation (21), as recommended by [20]: 

 ITR � �log%��� t _ ∗ log%�_� t �1 R _� ∗ log% �"�]6�"�� ∗ ´µ'   (21) 

 
where �  is the stimulus frequencies, _  is the recognition 
accuracy, and ( represents the duration per trial. 
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TABLE I 
SUMMARY OF STUDIES 

No. Ref. Description Ch. Tr. Sub. 

Feature 

Extraction 

Method 

ITR 

[bits/min] 

(max.) 

Average 

accuracy 

[%](max.) 

1 [9] 
Comparative study of PSDA and 
CCA methods for the detection of 

the SSVEP paradigm 
64 24 7 

PSDA 
CCA 

89.54 N/A 
112.57 N/A 

86.90 N/A 
97.62 N/A 

2 [21] 
SSVEP BCIs developed with the  

LASSO method for the recognition 
of stimulus frequency signals 

3 4 9 
LASSO 

CCA 
60 TW=1s 

50.5 TW=1s 
100 T=1s 
96 T=1s 

3 [11] 
A Benchmark database for the 

analysis of BCIs  
based on SSVEP signals 

64 40 35 
FBCCA 

CCA 
117.75 TW=1.25s 
89.89 TW=1.75s 

78 T=1.25s 
76 T=1.75s 

4 [22] 
Comparison of methods based on 
Canonical Correlation Analysis to 

detect SSVEP signals 
8 12 10 

CCA 
MwayCCA 
L1-MCCA 
MsetCCA 
IT-CCA 

IT-CCA+CCA 

50.40 TW=2s 
64.15 TW=1.5s 
65.06 TW=1.5s 
66.22 TW=1.5s 
71.37 TW=1s 
91.68 TW=1s 

83 T=2s 
85 T=1.5s 
85 T=1.5s 
87 T=1.5s 
82 T =1s 
93 T=1s 

5 [19] 
Improvement of the performance of 
a BCI-SSVEP through the  method 

of Correlated    Component Analysis 
64 40 35 

TRCA 
CORRCA 

155 TW=1s 
170 TW=0.8s 

82 T=1s 
80 T=0.8s 

6 [17] 

Proposed Variational Mode 
Decomposition Method for the 

Development of a High-Performance 
BCI-SSVEP 

8 13 5 

EMD 
EEMD 

CEEEMD 
VMD 

1900 TW=3s 
490 TW=2.5s 
200 TW=4s 
3120 TW=1s 

85 T=3s 
84 T=2.5s 
90.5 T=4s 
75.5 T=1s 

The presented works specify the authors' available ITR 
values and their corresponding accuracy. These values 
correspond in some cases to the average, and in other cases, 
to the maximum value. By default, if the papers have both the 
maximum and average values, we only show the maximum 
values. 

B. Method comparison for SSVEP paradigm 

The work in [9] presents a comparison of the standard CCA 
method with the power spectral density analysis (PSDA). The 
document compares the methods in four aspects: ITR, 
operating speed, recognition accuracy, and power spectral 
amplitude. The technology used in this study was the BioSemi 
ActiveTwo EEG system. The results analyzed in the study 
related to the four aspects that have been considered show that 
the CCA method surpassed the PSDA. The CCA method 
presented a higher value for the fundamental frequency and 
the second harmonic of the power spectrum. In Table I, the 
ITR and accuracy data are available, which are higher for the 
CCA. CCA method also had a better performance in terms of 
operation speed since it presented an averaged recognition 
time of 0.32 s and PSDA of 0.42 s. 

The research in [21] proposes recognizing SSVEP with a 
smaller error rate in a shorter time, using the LASSO method. 
The Nuamps amplifier made data acquisition. The results 
show that the LASSO method performs better against CCA 
because it can recognize the BCI stimulus frequency in a 
smaller time window based on SSVEP. Therefore, the authors 
concluded that LASSO reduces recognition time without 
compromising accuracy, which generates a higher ITR value. 

Other studies employ methods based on CCA but with 
some variants to improve their performance. For example, in 

[11], the authors present a benchmark SSVEP database 
obtained with a BCI spelling system of 40 targets used to 
compare the performance between the CCA and FBCCA 
methods. The results proved a better performance of FBCCA 
over CCA by obtaining a maximum ITR. The FBCCA 
method obtained 117.75 [bits/min] over the CCA, which 
showed an ITR of 89.89 [bits/min]. 

The authors in [22] compare the CCA method with some 
other variants such as L1-MCCA, CACC, MsetCCA, ITCCA, 
MwayCCA, and a method that combines IT-CCA and CCA. 
The experiment with each user consisted of 15 blocks, with 
12 trials for each. A trial had a total duration of 5 seconds (1 
second of gaze shifting time and 4 seconds of exposure). 
According to the results obtained, the traditional CCA and the 
CACC method had a very similar performance to each other 
and the lowest among them. On the other hand, the combined 
method between the IT-CCA and the CCA had the best 
performance. Here, the mixed method achieved an ITR of 
91.68 [bits/min], while the CCA method only obtained 50.40 
[bits/min]. 

In summary, these previous works show that methods 
based on template modifications get better performance than 
those based on input data processing. 

On the other hand, the spatial representation methods, we 
checked some relevant studies. In [19], the authors make a 
comparison between the task-related component analysis 
(TRCA) and the correlated component analysis (CORRCA). 
The experiment uses the same dataset of [11]. Analyzing the 
data obtained, the authors conclude that the TRCA-based 
method shows less favorable results than the CORRCA-based 
method. In [17], the authors presented a method using 
variational mode decomposition (VMD) and EMD, EEMD, 
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and CEEEMD methods. The results show very similar 
performance in terms of the final accuracy achieved by the 
four methods. In terms of ITR, the VMD is significantly 
higher than other methods with 3,120 [bits/min], which 
allows the authors to conclude that VMD would be the most 
recommended among them. 

In general, comparing the methods based on CCA with any 
spatial representation methods, we see a very high advantage 
of the spatial representation methods. The ITR values 
obtained by the CCA-based methods vary around 100 
[bits/min]. In contrast, the spatial representation can obtain 
values between 155 to 3,120 [bits/min]. 

C. Discussion 

Although various studies have shown that the accuracy 
achieved with any of them can be high (over 90%), sometimes 
they spend much time. The goal is to achieve the shortest time 
possible with high accuracy getting a higher ITR. As a 
consequence, the subject would be less exposed to stimuli, 
reducing fatigue. Many methods and algorithms have been 
developed to point out this goal; here, we only checked two 
groups: the CCA-based and the spatial representation 
methods. 

The CCA method and its variations are among the most 
widely used in detecting SSVEP for BCI systems since it is 
efficient compared to others, with a simple and stable 
application [17]. However, some other methods, such as 
spatial representation methods, more recent than CCA, have 
appeared promising results and showing significantly higher 
performances than CCA-based methods. 

The first four studies (see Table I) show that the 
performance of the standard CCA can be improved through 
the use of the traditional method in combination with others, 
with filters, or with specific alterations to the method. It is 
worth mentioning that the CCA and the vast majority of 
commonly used methods are linear. Regarding the spatial 
representation methods presented, they involve 
considerations that allow them to be used in non-linear 
processes. Indeed, the ITR differences between them are not 
very wide, reaching 117.5 [bits/min]. On the other hand, in 
the fifth and sixth studies, these values are easily exceeded, 
especially by the VMD method, which reaches 3,120 
[bits/min], showing a critical advance against others. 

In [23], the authors mentioned that non-linear methods 
would give better results than linear methods because the 
brain naturally emits non-linear signals. Therefore, a 
significant performance improvement would be expected in 
future studies to extract SSVEP signal features when 
considering the use and development of non-linear methods. 

Considering all the previous assumptions, we perceive a 
possible use of the non-linear CCA method [24] for future 
studies. According to our research, non-linear methods based 
on CCA have not been presented yet. 

This non-linear CCA proposal uses computational 
intelligence tools such as neural networks to modify the CCA, 
turning it into a non-linear method. NLCCA has shown good 
performance in forecasting for meteorological applications; 
its potential use could considerably detect BCI-SSVEP 
signals by adding the robust performance of the CCA method 
and the non-linear nature of brain signals. 

IV. CONCLUSION 

This article provides evidence about the processing of brain 
signals that is naturally non-linear. Their processing with 
methods based on non-linear systems improves the capacity 
to enhance accuracy, reaching very high information transfer 
rates. According to the review carried out, it is observed that 
VMD and FBCCA differ by 96.23% concerning the 
information transfer rate-ITR. 

On the other hand, techniques based on canonical 
correlation analysis have focused on handling the template 
and the input EEG-signals as linear approaches. However, 
there has not been any evidence about the non-linear CCA 
(NLCCA) method on the BCI-SSVEP paradigm. The 
NLCCA method could improve performance while 
processing over the electroencephalogram non-linear nature 
signals, opening a research field of deep analysis to improve 
the performance of accuracy and ITR being susceptible 
parameters for this paradigm. 
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