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Abstract—The research is interested in studying a modern mathematical topic of great importance in contemporary applications known 

as the representation of the state space for mathematical models of time series represented by ARMA models and the discussion of a 

Kalman filter such as the one who has very general characteristics and of the utmost importance and depends on the representation of 

the state space. Raw data on electrical energy consumption in Mosul city have been used for the period from (15/6/2003 to 25/9/2003), 

and after examining these data as to whether they are stationary or not, it was found that there is no stationary for the series behavior 

in the arithmetic mean, variance and after conversion. The state-space model is characterized by being an efficient scale in all states 

that are not observed or controlled, and for this, the state-space model can be used to estimate states that cannot be observed. It can 

also express the state-space model simply for complex operations and is characterized by the flexible model. The series into a stationary 

time series with variance and mean. The autocorrelation function (ACF) and the partial autocorrelation function (PACF) have been 

calculated, and observation of the propagation behavior of these two functions shows that the best model for representing data is ARMA 

(2,1) model. And then, the parameters of the model were estimated using the matrix system for the state-space model and then taking 

advantage of the state-space model in estimating the observation equation for a Kalman filter such as the security and it was found that 

a Kalman filter such as security is very efficient in purifying the series from noise. 
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I. INTRODUCTION

Since the beginning of the seventh decade of the twentieth 

century, the subject of Time Series Analysis has emerged as 

one of the vital topics at various levels. Applications of this 

subject have expanded, so we do not find a scientific, 

technical, or literary field free of it. Usually, we are interested 
in the subject of time series analysis to study phenomena or 

variables that change with time change such as the number of 

heartbeats per minute, the temperature during hours on a 

particular day, the daily closing price of a specific company’s 

shares, as well as fluctuations in currency exchange rates and 

financial stock markets, among others. Sometimes it is 

important to use filters to extract important patterns in time 

series data, as filters are used to show some of the time series 

properties as the general direction. The primary purpose of 

filters is to obtain the optimum estimator. The first pioneering 

studies on the issue of filters appeared in the early forties of 
the last century, as (Kolmogorov) in 1941 and Wiener in 1942 

independently developed a technique to find a linear estimate 

with linear minimum mean-square error estimation, which 

received great attention and subsequently had a significant 

impact in developing the idea of a Kalman filter. [1], then [2] 

culminated that study with other results resulting in the 

development of a Recursive Algorithm to find the optimum 

linear estimator, and this algorithm was constrained by 

conditions such that the studied view has a single dimension 

(Scalar) as well as the parameter. The data is almost endless, 

and the stationary process is stable. The results of (Wiener) 

developed by making it more general to make the data expired 

and cover the non-stationary processes [3]. Other studies 
followed in the same field, including but not limited to the 

study undertaken by Kim [4], which did not exceed the results 

of Sharaf et al [5]. 

II. MATERIALS AND METHODS

It is a very general method of mathematical representation 

developed by Salmi et al. [6]. Through the state-space 

method, the relationships between Inputs and Outputs 

dynamic systems can be represented. It is known that the 
outputs of the determent dynamic system depend on both the 

inputs as well as the previous outputs. To know the number 

of previous outputs that we need to know the current output 

of the system. If we have a dynamic system described by a 
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hypothetical equation of the rank (q), then we need (q) from 

the inputs only to find the current value of the output, that this 

past (q) outputs summarize the past for the system whenever 

we studied the current output for the system, so there is no 

need for detailed details on the past of the system that affects 

its present and future. That part of the system’s past that 

affects its present and future influence on the system's 

behavior is called the state of the system, and the variables 

that represent the state of the system are called state variables. 

Moreover, we can develop the state space by relying on the 

relationship between inputs and outputs or by initial 
knowledge of the natural law that governs the system [7].  

This includes distinguishing the model from the state 

variable in all input and output variables and the currently 

unlimited natural statistical knowledge, and in the case of 

space models, the term of Estimation is usually used to refer 

to: 

 Estimate the unknown (non-known) parameters of the 

state-space model. 

 Estimate states. 

To form the state-space model, it is necessary to prepare at 

least three variables, namely: 
 Inputs 

 Outputs 

 State variables 

Likewise, the dimension of the state space vector must be at 

least equal to the order of the system [8], 

The representation of the state space of the system is a basic 

idea in the modern control theory, as the state defines the 

system as a studied minimum (specific) of present and future 

information and can be described as the future behavior of the 

system and depends on Markov properties that require that the 

state space is what gave the future to the system in a way. It 
is independent of its past, and accordingly, the representation 

of the system's state space is also called the Markov 

representation of the system. 

The system can be a linear time constant if both are linear 

and constant over time. Fixed linear time systems that contain 

fixed properties such as fixed states of a fixed and linear time 

system can represent many physical characteristics. The 

representation of the state space is described by the state and 

output equations and can be described as follows [8]:  

 Yt+1 = AYt+GXt+1 (1) 

and the output equation: 

 Zt=HYt (2) 

Yt :represent a specific vector with a dimension (k×1), A: 

represent transitional matrix dimension (k×k), G: represent 

input matrix dimension (k×m), Xt: represent the input vector 

of the system has a rank (m×1), H: represent output views 

matrix(m×k), Zt: represent output vector rank(m×1). 

If the input Xt and the output Zt are stochastic operations, 

then the representation of the state space is given as follows: 

 ���� = ��� + �	��� (3) 

 
� = ��� + �� (4) 

As 	��� = 
��� − �(
���|
� , � ≤ �) It is the vector (n × 1) 

for one forward step to predict the error of the Xt process, and 

bt is the vector (m × 1) for the noise and assumed to be 

independent of at. 

  If Zt = Xt fades from equation (4) and the representation of 

the state space for the stochastic process of the constant Zt 

becomes as follows: 

 
� = ��� (5) 

Thus, Zt's process is the output of a linear stochastic system 

with a fixed time indicating the white noise input at. As for Yt, 

it is defined as the state of the system, the state equation is 

also known as the system equation or the transformation 

equation, and the resulting equation also indicates the 

measurement equation or the observed equation. 
The representation of the system's state space is related to 

a Kalman filter, and initially, the idea was clarified in the 

engineering applications of the first to apply the concept of 

state space to ARMA model analysis [9]. 

A. The Relationship between the State Space Model and the 
ARMA Model 

To represent the ARMA model as the state-space model in 

the state of a multivariate and a single variable, we assume the 
mean is constant and is zero and the ARMA model (p, q) is a 

vector with a dimension of (m) as follows: 

 �(�)
� = �(�)	�  (6) 

 
� = ��
���+. . . +��
��� + ��	��� (7) 

As: �(�) = (1 − ���−. . . −����) �(�) = (1 −���−. . . −����) 

    And at: multivariate with a dimension (m) and a zero mean 

for the white noise process of trapping (, ) is used for both 
single-variable or multivariate states, and there should be no 

noise because the state is clear from the context of the speech, 

and the equation can be rewritten (6) in the form of a moving 

average and by multiplying by∅��(�), we get the following: 

 
� = ∑ !"	��"∞"#$  (8) 

 
��� = ∑ %"	����"∞"#$  (9) 

Assume that: 

 
���|� = �[
���|
', ( ≤ �] (10) 

Then: = 
��*|� + %*��	���
 We assume and without loss of generality, that (p > q) plus 

0i  if necessary, from equation (7) we obtain: 
���|� = +�
�����|�+. . . ++�
� 
�����|� = +�
���|�+. . . ++�
���|� 

                
= ,(
� , 
���|� , . . , 
�����|�) 

 

It is clear that 
����*|� (i>0) is a function of (
� , 
���|� , . . , 
�����|�) the representation of the state space 

of the ARMA (p, q) model vector is given as follows: 

⎣⎢⎢
⎡
���|���
��0|���
    ⋮
���|���⎦⎥⎥

⎤ = 50   I   0   0   …   0

0   0   I   0   …   0⋮       ⋱��  �p-1      …   ��
8 ⎣⎢⎢

⎡
�
���|�
    ⋮
��p-1|�⎦⎥⎥

⎤ + 59!� ⋮!���
8 	��� (11) 

 
� = [1    0 ....   0] ⎣⎢⎢
⎡
�
���|�
   ⋮
��p-1|�⎦⎥⎥

⎤
 (12) 
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B. Kalman Filter

The recursive strategy [10] was developed based on a state-

space representation called a Kalman filter, a general formula 

that handles stationary and non- stationary time series. The 

candidate is characterized by the recursive property, which 
allows us to take advantage of new data and information as 

times change. A Kalman filter can be defined as a recursive 

algorithm to find an optimal estimator for the state or 

parameter variable, i.e., the estimation error variance is 

minimal [11]. A Kalman filter has been used widely in many 

fields of application, especially those that have evolved and 

originated after the scientific revolution that occurred in 

communications engineering, computer, and space science, 

and from these applied fields: [12]. 

 Engineering applications include signal processing by

satellites or radar tracking and navigation systems for
spacecraft, aircraft, and cars.

 Computer applications: such as image processing, real-

time graphics identification, and audio processing.

 Economic and statistical applications: such as

forecasting economic indicators and in the field of

statistical control and control theory (Control Theory).

The mathematical model of the filtering issue can be 

expressed by the state-space model, through which the system 

can be represented by the state (system) and viewing 

equations as follows [13]: 
� = ��
��� + ;�<� = =�
� + >�
Our goal is to obtain an estimate of the state vector Zt and 

estimate the covariance matrix Pt based on available 

information. Likewise, observation y0, y1…, yn. 

To facilitate the estimation process, we assume the following 

assumptions [14]. 

 The Zt operation is a dimensional vector (p * 1) and the

yt operation observation is a dimensional vector (q * 1).

 The transformation matrix t  is not anomalous and has 
a dimension (p * p) and the matrix Mt is the observation 

matrix dimension (q * p). 

 The noise process wt is a dimensional vector (p * 1)

representing a strong white noise process so that:?(;�) = 0 ?(;�;�′ ) = @
 The observation noise vt is a dimensional vector (q * 1)

representing a strong white noise operation so that: ?(>�) = 0 ?(>�>�′ ) = A
 The Pt covariance matrix has a dimension (p * p) that

is positive, defined, and written as:B� = ?(
C� − 
�)(
C� − 
�)′ 

III. RESULTS AND DISCUSSION

In this part of the research, data are presented in the amount 
of daily electrical energy consumption for the city of Mosul 

(mW / hour). During the period from 15/6/2003 to 25/9/2003, 

the description of the time series was traced by drawing what 

is known as the time series plot. We also investigate and learn 

about the nature of the oscillations in it and whether it 

includes a trend or not.  The general trend is beneficial in 

confirming the stationary of the time series and its close 

relationship to forecasting.  

Fig.1 The timeline of the electric energy consumption in Mosul

Figure 1 shows the drawing of the time series that we are 

dealing with, and it is noted that the fluctuation of the series 

begins with a gradual decline, then it takes a gradual rise and 

a parabolic pattern of the second degree, which indicates the 

non- stationery of this series. On the other hand, we noted a 
clear dispersion around the general path of oscillation, which 

confirms the presence of clear and influential random effects 

in this series. 

Fig. 2  Observational behavior after converting the time series to a stationary 

series. 

To convert the time series to a stationary series, predicting 

the classical methods requires that the series be stationary. 

The logarithmic transformation of the original series 

observations was performed as they are not stationary by 

variance, then Differences are taken, and they start with the 

first difference (D
�) and then the second difference (D0
�).

After obtaining the stationary in the behavior of the series, as 
shown in Figure 2. 

In order to determine the appropriate model and its rank, 

the auto-correlation function (ACF) and the partial 

autocorrelation function (PACF) had been calculated shown 

in Figure 3 as follows: 
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Fig. 3 The autocorrelation function and the partial correlation function of the 

stationary series. 

Figure 3 above represents the auto-correlation function and 

the partial correlation function of the stationary series. The 

appropriate series model is the ARMA(2,1)  model also the 

AIC standard was used to choose the model, and the following 

table shows the appropriate results for a group of ARMA 

models (p, q) and different values from (p) and (q) as well as 
the AIC standard value in each state. 

TABLE I  

FITTING ARMA (P, Q) MODEL OF TRANSFERRED DATA EFG0AIC MSEQP 

0.007223 -495.982 0.007314 1 0 

0.007032 -496.686 0.007179 2 0 

- - - 3 0 

0.013345 -433.976 0.01348 0 1 

0.009432 -467.028 0.009625 0 2 

0.008774 -472.337 0.009045 0 3 

0.006627 -502.682 0.006782 1 1 

0.007057 -494.322 0.007292 2 1 

0.00608 -507.372 0.006360 3 1 

0.006029 *-510.2210.006243** 1 2 

0.006087 -507.262 0.006354 2 2 

0.006004 -506.641 0.006344 3 2 

0.005992 -508.852 0.006366 1 3 

0.006078 -505.406 0.006419 2 3 

0.006038 -504.075 0.006444 3 3 

* The lowest value for a standard AIC.

  ** The lowest value for the squared error mean. 

When testing a set of ARMA (p, q) models and for different 

values of (p) and (q) it was found that the minimum AIC value 

at the ARMA (2,1)  model and the estimated final model is as 

follows: 

Xt = -0.3882Xt-1 - 0.3369Xt-2 + t + 0.9876t 

To confirm the ARMA (2,1) model's validity, the auto-

correlation function and the partial autocorrelation function of 

the residuals shown in Figure 4 and found to fall within the 

confidence limits, indicating that the residues of this model 

are not correlated with each other. 

Fig. 4 The autocorrelation function and the partial correlation function for the 

ARMA residual (2,1). 

Using equations (11) and (12) that represent the state space 

of the ARMA model can be transformed ARMA(2,1)  model 

in the above equation to represent the state space as in the 

following equation 

H
�|�
���|�I = H0  1�2 ��I H
���
��0|�I + H1!�I 	�
H
�|�
���|�I = K0  10.3369  0.3882P H
���
��0|�I + K10.5994P 	�

111  

= -0.3882 + 0.9876 = 0.5994 

The following equations show the mathematical model of the 

filtering issue obtained through the state space model: 

State equation: H
�|�
���|�I = K0  0.62850.3369  0.0672P H
���
��0|�I + K0.37150.321 P ;�
Observation equation: <� = [0.5248� �0.3715] H
�|�
���|�I + >�

The last transformation matrix was obtained after several 
iterations, and the state covariance and observation 

covariance were as follows: 

@T = K0.00622    0.000450.00045  0.00621PAT = [0.0058]
Figure 5 below shows the time series of electrical energy 

consumption before filtration and after filtration, and it is 

clear from the figure how efficient a filter such as security is 

in purifying the chain of noise. 
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Fig. 5 Time series of electric power consumption before and after filtration. 

It is possible to clarify some statistical measures of 

localization and dispersion to compare the filtering efficiency 

as shown in Table 2, as we note from the table that the filtering 

process significantly reduced the dispersion of data, which 

indicates the efficiency of a Kalman filter such as security in 

the filtering process for the series of noise data. 

TABLE II 
 COMPARING THE ORIGINAL AND FILTERING DATA 

Coefficient of 
variation 

Standard 
deviation 

SE 
Mean 

MeanData 

34.828 0.1010 0.0100 0.0029 
Original 

Data 

0.6865 0.0784 0.0078 0.1142 
Candidate 

Data 

IV. CONCLUSION

The time series for the consumption of electrical energy is 

non-stationary, so the logarithm and the second difference of 

data were taken to obtain a time-series of stationary by 

variance and arithmetic mean, and then drawing the auto-
correlation and partial auto-correlation functions. Hence, the 

best model representing the data is ARMA (2,1). 

The state-space model is characterized by being an 

efficient scale in all states that are not observed or controlled, 

and for this, the state-space model can be used to estimate 

states that cannot be observed. It can also express the state-

space model simply for complex operations and is 

characterized by the flexible model. 

A Kalman filter enjoy despite his complex calculations, has 

important and very useful features in different applications 

due to his dependence on the representation of the state space, 
we can immediately filter the time series and rely on the 

information. 
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