
Vol.12 (2022) No. 3

ISSN: 2088-5334

Implementation of Asynchronous Microservices Architecture on Smart

Village Application

Sri Andriati Asri a,*, I Nyoman Gede Arya Astawa a, I Gusti Agung Made Sunaya a,

I Made Riyan Adi Nugroho a, Widyadi Setiawan b
a Electrical Engineering Department, Politeknik Negeri Bali, Kampus Bukit Jimbaran Street, Kuta Selatan, Badung, 80364, Indonesia

b Universitas Udayana, Kampus Bukit Jimbaran Street, Kuta Selatan, Badung, 80364, Indonesia

Corresponding author:*sriandriati@pnb.ac.id

Abstract— This paper discusses the implementation of microservices architecture in smart village applications. The smart village

application is a village-based online marketplace that facilitates various business actors' buying and selling process in a village. This

application manages five types of products: lodging reservations, tourist attraction tickets, culinary purchases, and purchasing knick-

knacks show tickets. The complexity of processes, data, and high potential users requires that the system architecture is designed to

produce a scalable, fault-tolerant system and easy to develop. Microservices architecture is one of the recommended architectures for

building a scalable, fault-tolerant, and maintainable application. This architecture has several variations, ranging from variations in

communication between services to the technology used. The suitability of applications with architectural variations and the complexity

is a challenge in implementing this architecture. This paper describes how to implement the microservices architecture in smart village

applications. Design and implementation of the microservices architecture in the smart village application was followed the WSIM or

Web Services Implementation Methodology stage. The implementation results show that the application is easier to manage because it

is divided into independent microservices. Implementing asynchronous communication and a choreographic approach to each service

makes the client application response faster; besides, it did not affect other services if there is a problematic service.

Keywords— Microservices; smart village; asynchronous.

Manuscript received 6 Dec. 2020; revised 17 Mar. 2021; accepted 13 Jul. 2021. Date of publication 30 Jun. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The smart village application is a village-based online

marketplace that facilitates various business actors' buying

and selling processes in a village. Business actors can upload

the products they offer. This application manages five types

of products: lodging reservations, tourist attraction tickets,
culinary purchases, and purchasing knick-knacks show tickets.

Products uploaded can be ordered by visitors. After making a

payment, the system sends a voucher that could be exchanged

according to the product type. Vouchers are sent via email.

The complexity of processes, data, and high potential users

in smart village applications, so the system architecture must

be scalable, provide fast responses, and have fault tolerance.

In addition, the potential for the system to be developed at a

later date is very high, so the system design is made as easy

as possible to develop. There are two architectural approaches

to developing applications: monolithic and microservices

architecture.

Monolithic architecture recommends all application

functions, logic, and database into one single application [1].

This monolithic architecture was employed by many of the

world's internet service providers, such as Netflix, eBay, and

Amazon [2]. Applications with a monolithic architecture at

the start of development have their advantages; for example,

they can easily develop, test and deploy processes. However,

the increase in the number of users and the complexity of the

existing features affects application performance,

maintenance, and the application update process. Application
performance decreases as the application gets bigger and has

many users. Program code that is very complex and difficult

to understand may hold back bug fixes and adding features.

The slightest update process affected the entire application.

Also, due to the sheer size of the application, a longer restart

time is required, where the application cannot be used during

the restart process [3].

Microservices architecture is becoming widely used and

has become an alternative way of overcoming challenges that

1236

arise in monolithic architectures, that is, by breaking down

applications into a small set of services and making them

communicate with each other. The advantages of

microservices architectures such as maintainability,

scalability, reusability, availability, and automated

deployment make companies migrate their applications.

Netflix, a video streaming service provider, can now handle

one billion calls every day by implementing a microservices

architecture [2].

Several studies have been carried out on the

implementation of microservices architecture in an
application, such as Scattone and Braghetto, which

implemented microservices architecture in smart city

applications to improve performance [4]. Malyuga et al. [5]

proposed an implementation model for microservices

architecture to maintain data consistency. Mufrizal and Indarti

[6] implement a microservices architecture to handle resilient

challenges. Rozi et al. [7] implemented a microservices

architecture to speed up the deployment process. Manel Mena

et al. implemented a Progressive Web Application based on

microservices to combine geospatial data and the Internet of

Things [8]. Lyu et al. [9] proposed Microservice-Based
Architecture for an Energy Management System. Qihao Zhou

et al. proposed the Design and Implementation of Open LoRa

for IoT [10]. However, the implementation does not consider

cases where one of the services dies and what the application

should do.

Therefore, this paper discusses implementing the

microservices architecture in smart village applications. In

this paper, communication between services was carried out

asynchronously to reduce waiting time when calling service.

The architectural design was also equipped with a Message

Broker to control when a message must be processed at the
destination service. This Message Broker is also used to delay

sending a message if the intended service has a problem. The

smart village application's design and implementation of the

microservices architecture were followed WSIM or Web

Services Implementation Methodology stage. WSIM consists

of 6 stages, i.e., requirements, analysis, design, coding, testing,

and deployment.

II. MATERIALS AND METHODS

Microservices is an architectural paradigm in application

development. In this architectural style, applications are

developed into a series of small and independent services that

work together as a system. Also, the microservices style

ensures services can be scaled independently and developed

using different technologies. The advantages of microservices

architectures, such as maintainability, scalability, reusability,

availability, and automated deployment, make this

architecture widely used and an alternative to overcome

challenges that arise in monolithic architectures.

It is very important to consider the choice of inter-service
communication patterns and execution flow in the

microservice architecture. This communication can occur

synchronously or asynchronously, and both of these

approaches have their advantages and disadvantages. This

paper discusses how asynchronous communication is

implemented in the microservices architecture of smart

village applications.

With many participating services, workflow management

is very important to do. Workflow management can be done

in two approaches, using an orchestration approach or using a

choreography approach. In simple terms, the orchestration

approach is carried out by creating a service center that is

responsible for coordinating other services. While the

choreography approach, each service is responsible for its

own operation, where each service knows what and how to

react to events. This approach was chosen because it can

increase system availability, where the failure of one service

does not impact the entire system.
The process of designing and implementing the

microservices architecture in the smart village application

follows the Web Services Implementation Methodology

stages. This method is a systematic approach to web service

development by utilizing agile software development

methodology and extends the methodology by specifying web

service activity specifications. Web Service Implementation

Lifecycle refers to the stages for developing a Web Service

from the requirement to deployment.

A. Microservices Architecture

The microservices architectural style focuses on

developing singular applications to operate as a set of

"microservices", each service running its process and

communicating with mechanisms such as a RESTful API [2].

Each microservice is built to be used independently and is

designed around business capabilities with automatic

execution. When referring to microservices, it is necessary to

compare them with the monolithic application development

style [11].

The monolithic architectural style has become a
"traditional" approach to application development. In

monolithic applications, the application manages HTTP

requests, propagates domain logic, receives and updates

information from the database, and then selects and displays

HTML pages as one execution process [12]. If any changes

are required, the entire application must be a complete rebuild

and re-deployment. In monolithic applications scaling

applications can only be made horizontally with the load

balancer [13].

One of the goals of microservices architectures is to

overcome the limited scalability of monolithic architectures.
The application is vertically decomposed into a standalone

system according to business services in the microservice

architecture [14]. This decomposition is concerned with

selecting an autonomous team that managed each vertical

domain. In addition, the scalability and modular structure

make the application easier to understand and manage [15].

Data consistency is a challenge because data is managed

independently on each service [16]. The traditional approach

to dealing with this is by transaction, often used in monolithic

applications. In a microservices architecture, distributed

transactions are very difficult to implement. To deal with this
problem, the approach that can be taken is to use

compensating operations [17].

Since services can fail at any time, the application needs to

be designed to tolerate service failures. The existence of a

service monitoring process to detect failures quickly is

important in the microservice architecture. This monitoring

process can provide an early warning of something wrong

1237

with the service, thus triggering the development team to

follow up.

In a microservices architecture, you can dynamically scale

services with heavy loads; this makes resource use effective.

Micro-services that are small and autonomous are easier to

deploy and have little potential to cause system failure when

something goes wrong [18]. By leveraging Docker containers,

instant services can be implemented with lower overhead than

through operating-system virtualization[19]. These containers

run on a cluster-management infrastructure such as Apache

Mesos to manage load balancing between containers in the
cluster [20].

B. Asynchronous Communication Pattern

A microservices-based application is a distributed system

running on multiple processes or services. Services must

interact using inter-process communication such as HTTP,

AMQP, or RPC calls. It is very important to consider the

choice of inter-service communication patterns and execution

flow in the microservice architecture. This communication
can occur synchronously or asynchronously [21].

Synchronous communication is a communication style in

which the caller waits until an answer is available. This

communication style is widely used because it is simple and

easy to implement. Although synchronous calls are simpler to

understand, debug, and implement, a few trad-offs are

considered. Synchronous communication makes services

vulnerable to cascading failures. If downstream services fail

or take too long to respond, resources can run out quickly.

This can cause a domino effect on the system. Synchronous

integration is not recommended for inter-service

communication. They do not allow microservices to become
autonomous, and also, in one service failure, the overall

performance was affected. As synchronous dependence

between microservices increases, the overall response time

for clients becomes worse.

In the asynchronous type of communication, the caller does

not need to wait for a response from another service, so

dependence between services can be avoided. In addition,

asynchronous communication allows several services to be

called in parallel. The application of asynchronous

communication is possible with several variations. At least

three common techniques are typically used in inter-service
communication in microservices architectures [22].

1) HTTP-based Communication: The service called the

service destination directly using the HTTP protocol in this

inter-service communication. Usually, HTTP-based

communication is synchronous communication where the

service caller takes the next step until the service call is

complete. Apart from synchronous inter-service

communication, an HTTP-based communication, we can also

make service calls in asynchronous HTTP-based

communication. Asynchronous HTTP-based communication

is carried out with HTTP polling, where the service makes
requests to other services and then check separately to find out

the status of the request. With this approach, services remain

isolated from each other, and the coupling is loose. The

downside is that it creates additional HTTP requests on the

second service. This also causes complexity to the client as it

now has to check the progress of the request.

2) Message-based Communication: Another
communication pattern that we can use in a microservice

architecture is message-based communication. Unlike HTTP-

based communication, the services involved do not

communicate directly. Instead, a service pushes messages to

a message broker; then, other services can choose to subscribe

to messages at a broker they care about. This eliminates a lot

of the complexity associated with HTTP communication. In

this type of communication, checking the request's progress

can be done using the Message-Id obtained from the message

broker. To communicate properly, each service must make a
contract regarding the structure of the message and its

contents; this shows that there is still a coupling between

services.

3) Event-driven Communication: Another communication
pattern is event-driven communication. Unlike messaging

patterns where the service must know the message's structure

and content, this approach does not require it. Communication

between services takes place via events that individual

services produce[23]. Message brokers are still needed here

as the service can write their events to them. However, unlike

the messaging approach, the consuming service does not need
to know the event's details; they react to events. Services can

listen to events they care about, and they know what logic to

execute in response to them. This pattern makes services

loosely coupled as no payload is included in the event [24].

C. Choreography-based

Microservice architecture is a collection of small services,

with each service having a specific function. This service

module cannot perform well in isolation and requires some

type of media to interact and share data. There are two ways
to unify these service modules: microservice orchestration

and microservices choreography [25].

The orchestrator (central controller) handles all

microservices interactions in microservices orchestration. It

transmits events and responds to them. Microservice

orchestrations are more like centralized services. It calls one

service and waits for a response before calling the next service.

It follows the request-response type paradigm[26].

In microservice choreography, each microservice performs

its activities independently, and it does not require any

instructions. This is like a decentralized way of broadcasting
data known as events. Services that are interested in the event

use them and take action. This is also known as reactive

architecture[27]. The service knows what to react to and how-

to, which is more like an asynchronous approach. So, this

approach can be used to solve the inter-service

interdependence problem that exists in the orchestration

approach [28].

D. Smart Village Application

The smart village application is a village-based online
marketplace that facilitates various business actors' buying

and selling processes in a village. Business actors can upload

the products they offer. There are 5 types of products managed

in this application: lodging reservations, tourist attraction

tickets, culinary purchases, purchasing knick-knacks, and

purchasing show tickets. Products uploaded can be ordered by

visitors. After making a payment, the system sends a voucher

via email. The voucher can be redeemed according to the

1238

product ordered. Payment processing can be made online via

credit card, ATM, mobile or internet banking, as well as

digital money.

Apart from being a medium for buying and selling online,

this smart village application is also used as a medium to

introduce each village's potential. This application is targeted

to facilitate all village-based business units in Bali in

promoting and selling their products globally. With high

potential users in smart village applications, the system

architecture must be scalable, fast response, and fault

tolerance. In addition, the potential for the system to be
developed in the future is very high, such as adding rating

features, sales reports, mapping village potential, integrating

delivery services, and a recommendation system that makes it

easier for visitors to plan tourist visits. This requires that the

application be developed by applying a design that is easy to

develop.

E. Web Service Implementation Methodology

The Web Service Implementation Methodology defines a
systematic approach to Web Service development by

leveraging agile software development methodologies and

extending that methodology by defining Web Service-

specific activities. This methodology defines a set of general

practices that create a method-independent framework, which

most software teams can apply to developing Web Service

applications. The Web Service Implementation Lifecycle

refers to developing a Web Service from the requirement to

deployment. The Web Service implementation lifecycle

typically includes the following stages: Requirements Phase;

Analysis Phase; Design Phase; Coding Phase; Test Phase;

Deployment Phase. These phases may overlap with each other
during the implementation process [29].

1) Requirement phase: This requirement phase aims to

understand business requirements and translate them into

microservices requirements in terms of features and

functional and non-functional requirements. The requirement

analysis process must involve the project stakeholders to

obtain a suitable requirement. After this, the requirements of

the analysis results are communicated to the development

team.

2) Analysis Phase: In the analysis phase, the micro-service

requirements are further refined into a conceptual model that
the technical development team can understand. In this phase,

architectural analysis is also carried out to define high-level

structures and identify micro-service interface contracts.

3) Design Phase: The detailed microservice design is
carried out in this phase. In this phase, it is necessary to define

the micro-service interface contracts identified in the analysis

phase. The defined interface contract must identify the

appropriate data element and type and the mode of interaction

between services.

4) Coding Phase: The coding and debugging phases for

microservices implementation are basically very similar to the
coding and debugging phases based on other software

components. The main difference lies in the creation of an

additional microservice interface wrapper. Additional

microservices must be deployed to the Web Server /

Application Server before test clients can use them.

5) Test Phase: For testing microservices, testers must also
perform interoperability testing between different platforms

and client programs apart from testing for correctness and

completeness of functions. In addition, performance testing

should be carried out to ensure that the microservices able to

withstand the maximum loads and stresses specified in the

non-functional requirements specification [30].

6) Deployment Phase: The deployment phase aims to

ensure microservices are properly deployed. This phase run

after the microservices are tested. The deployer's main task is

to ensure that the microservices are properly configured and
managed as well as to run post-deployment tests to ensure that

microservices are ready to use.

III. RESULT AND DISCUSSION

A. Requirement Result

The requirements analysis process is carried out by

analyzing the smart village application's functional and non-

functional requirements. The non-functional analysis is

carried out by analyzing technology architecture by
identifying the technologies needed to develop smart village

applications. Technology analysis is carried out on the

hardware and software. The results of the non-functional

analysis can be seen in Table 1.

TABLE I

NON-FUNCTIONAL REQUIREMENT

Technology Description

Vue.js Front-end framework that used to
create client applications

SLIM Framework PHP micro-framework that used to
create microservices

MySQL As a database in each microservice
Swagger As an interface and documentation

for each microservice
Docker As a container or container for each

microservice
Kong An open-source that used to create an

API gateway
RabbitMQ An open sources software that is

used as a message broker

System functional analysis is carried out by identifying

each business process contained in the smart village
application. Functional systems are then grouped based on

similar functionalities. Table 2 provides functional grouping

and mapping information in the smart village application.

Each microservice can represent one or more functional

groups. Similar functional groups can be combined into the

same microservice.

TABLE II

FUNCTIONAL GROUP

Group Functional

Product - Manage product data
Email - Send notification email
Customer - Manage customer data
Owner - Manage data owner
Order - Order products

- Manage order data

Payment - Make transactions to a payment gateway
- Receive transaction status from the

payment gateway

1239

Authentication - Login

- Forgot the password
- Change the password

From the analysis of functional group relationships, 7

microservices were produced, which will be developed in the

smart village application. Table 3 is information about

microservices that will be developed in the smart village
application.

TABLE III

MICROSERVICES IN SMART VILLAGE APP

Functional Group Microservice

Product Product microservice
Email Email microservice

Customer Customer microservice
Owner Owner microservice
Order Order microservice
Payment Payment microservice
Authentication Auth microservice

B. Smart Village Microservices Architecture

The Smart Village Microservices Architecture is designed

based on the results of the non-functional analysis. The Smart

Village Microservices Architecture can be seen in Fig 1. This

architecture consists of 4 main components, i.e., Client

Application, API Gateway, Microservices, and Event Bus.

1) Client Application: The Client Application is a website-

based application that the user can access directly. This

application is an interface between users and the smart village

application. The client application is built with a modern

front-end framework, namely Vue.js, and then hosted on a

web server.

2) API Gateway: API Gateway is a service-based
application that is used as an intermediary so that client

applications can interact with several microservices. This API

Gateway serves as an access gateway from outside (internet

network) to inside (internal microservice network). The

application client cannot directly access the microservices;

the request must go through the Gateway API then be

forwarded to the microservices. This aims to increase the

security of microservices. In this architecture, the API

Gateway was built using Kong (written in Lua).

3) Microservices: This microservice component consists
of a collection of microservices developed for the smart

village application. Each microservice represents a business

process in the smart village application. There are 7

microservices, i.e., Product microservice, Mail microservice,

Owner microservice, Customer microservice, Order

microservice, Auth microservice, and Payment microservice.

Every microservice on this architecture was built using the

SLIM framework (written in PHP).

4) Event Bus: The Event Bus is a component that regulates

communication between microservices. In this architecture,

RabbitMQ is used to perform this task. RabbitMQ is one of
the most widely used open-source message brokers.

RabbitMQ service bus acts as a link between several

microservices where microservices can publish messages

under the different number of queues available in the

RabbitMQ service bus. Other microservices could subscribe

to these messages available in the RabbitMQ service bus

queue. The microservices performed their logical functions

after receiving the event.

Fig. 1 Smart Village Microservices Architecture

C. Microservice Result

Each microservice is developed independently and runs on

a different node. In the smart village application, each

microservice is developed using SLIM. SLIM is a PHP micro-

framework explicitly developed for creating web services.

While the database used is MySQL.

1) Product microservice: The functions that exist on this

microservice, i.e., listing product, getting the product by
product id, creating a new product, updating product, delete

1240

the product. Design API for product microservice can be seen

in Table 4. Design is made according to the REST perspective.

TABLE IV

PRODUCT MICROSERVICES API

Method URI Use Case

GET api/v1/product Listing product
GET api/v1/product/{id} Get product by id
POST api/v1/product Create new product

PUT api/v1/product Update product
DELETE api/v1/product/{id} Delete product

2) Customer microservice: The functions in this

microservice include listing customers, getting customer by

id, creating new customer, updating customer, delete the

customer. The design API for customer microservices can be
seen in Table 5.

TABLE V

CUSTOMER MICROSERVICE API

Method URI Use Case

GET api/v1/customer Listing customer
GET api/v1/customer/{id} Get customer by email

POST api/v1/customer Create new customer
PUT api/v1/customer Update customer
DELETE api/v1/customer/{id} Delete customer

3) Owner microservice: The functions that exist in this

microservice include listing owner, get owner by id, create

new owner, update owner, delete owner. Design API for the

microservice owner can be seen in Table 6.

TABLE VI

OWNER MICROSERVICE API

Method URI Use Case

GET api/v1/owner Listing owner
GET api/v1/owner/{id} Get owner by email
POST api/v1/owner Create new owner
PUT api/v1/owner Update status order
DELETE api/v1/owner/{id} Delete owner

4) Order microservice: The functions that exist in this

microservice create new orders, get the order-by-order id, list

orders, update order status. The design API for microservice

orders can be seen in Table 7.

TABLE VII

ORDER MICROSERVICE API

Method URI Use Case

GET api/v1/order Listing order
GET api/v1/order/{id} Get order by id
POST api/v1/order Create new order
PUT api/v1/order Update owner

5) Email microservice: The functions in this microservice

include sending emails according to templates such as

registers, forget passwords, invoices, payment statuses, and

product vouchers. The process sends an email using the

Mailgun service. The design API for microservice orders can

be seen in Table 8.

TABLE VIII

EMAIL MICROSERVICE API

Method URI Use Case

POST api/v1/mail/register Sending email register
POST api/v1/mail/forgetpass Sending email forget
POST api/v1/mail/invoice Sending email invoice
POST api/v1/mail/payment Sending email payment
POST api/v1/mail/voucher Sending email voucher

6) Payment microservice: The functions that exist in this

microservice include making transactions to payment

gateways and receiving transaction status from payment

gateways. The design API for payment microservice can be

seen in Table 9.

TABLE IX

PAYMENT MICROSERVICE API

Method URI Use Case

POST api/v1/pay Create payment
POST api/v1/pay/notification Recive payment

response

7) Auth microservice: The functions that exist in this

microservice include user authentication, changing passwords,

and resetting passwords. The design API for auth

microservice can be seen in Table 10.

TABLE X

AUTH MICROSERVICE API

Method URI Use Case

POST api/v1/auth Login
PUT api/v1/auth Change password
POST api/v1/auth/reset Reset password

D. API Gateway Result

API Gateway is used as an intermediary to interact with

microservices so that client applications can interact. The

client application cannot directly access the microservices,

and the request must go through the API Gateway, then be

forwarded to the microservices. API Gateway contains a

mapping between the API route on the API Gateway and the

API route on the microservices. Detailed route mapping can
be seen in Table 11.

TABLE XI

API GATEWAY MAPPING ROUTE

Method URI Use Case

GET, POST, PUT /product Product

/api/v1/product

GET, DELETE /product/{id} Product

/api/v1/product/{id}

GET, POST, PUT /customer Customer

/api/v1/customer

GET, DELETE /customer/{id} Customer

/api/v1/customer/{id}

GET, POST, PUT /owner Owner

/api/v1/owner

GET, DELETE /owner/{id} Owner

/api/v1/owner/{id}

GET, POST, PUT /order Order

/api/v1/order

GET /order/{id} Order

/api/vi/order/{id}

POST /mail/register Email

/api/v1/mail/register

POST /mail/forgetpass Email

/api/v1/mail/forgetpass

POST /mail/invoice Email

/api/v1/mail/invoice

POST /mail/payment Email

/api/v1/mail/payment

POST /mail/voucher Email

/api/v1/mail/voucher

POST /pay Payment

/api/v1/pay

POST /pay/notification Payment

/api/v1/pay/notification

POST, PUT /auth Auth

/api/vi/auth

POST /auth/reset Auth

/api/auth/reset

1241

E. Event Bus Result

RabbitMQ, as an event bus is used as a communication

regulator between services. Microservices can publish

messages; then, other services can subscribe to the messages.

In RabbitMQ we need to create several events and their
producers and consumers.

F. Smart Village Client Result

The smart village client application is built using the Vue.js

framework. This application's main functions include

displaying products according to search parameters, buying

products, registering, logging in, viewing transaction history,

managing products, and managing transaction history. The

results of the Smart Village Client can be seen in Fig 2.

Fig. 2 Smart Village Client Result

IV. CONCLUSION

This paper describes how to implement a microservices

architecture in a smart village application. The

implementation process starts with the functional and non-

functional requirements analysis phase, microservice analysis

and design, coding, testing, and deployment. The resulting
architecture consists of four main components: the Client

application, API Gateway, Microservices, and the Event Bus.

The client application is the user's interface to interact with

the smart village application. API Gateway is used to keep

microservices from being directly consumed by the public,

making the architecture more secure. The microservices

section consists of 7 independent microservices to be easier to

scale and develop. The event bus or message broker is needed

so that communication between services can run

asynchronously; this is very effective at increasing the speed

of the response to the client because it does not wait for a

response from other related services. In addition, the process
or transaction continued to run with a message broker even

though there is a problematic service. With the scheme in the

message broker, the message can be sent until consumer

service is available.

ACKNOWLEDGMENT

This research was supported by the Directorate of Research

and Community Service, Director General of Development
and Research Enhancement, Ministry of Research,

Technology, and Higher Education. We thank everyone who

contributed to completing this paper in one way or another.

Hopefully, this research can be useful.

REFERENCES

[1] L. De Lauretis, “From monolithic architecture to microservices

architecture,” Proc. - 2019 IEEE 30th Int. Symp. Softw. Reliab. Eng.

Work. ISSREW 2019, pp. 93–96, 2019, doi:

10.1109/ISSREW.2019.00050.

[2] C. Richardson, “Pattern: Microservice Architecture,” 2018. .

[3] K. Gos and W. Zabierowski, “The Comparison of Microservice and

Monolithic Architecture,” 2020, doi:

10.1109/MEMSTECH49584.2020.9109514.

[4] F. F. Scattone and K. R. Braghetto, “A microservices architecture for

distributed Complex Event Processing in smart cities,” Proc. - 2018

IEEE 37th Int. Symp. Reliab. Distrib. Syst. Work. SRDSW 2018, pp. 6–

9, 2019, doi: 10.1109/SRDSW.2018.00012.

[5] K. Malyuga, O. Perl, A. Slapoguzov, and I. Perl, “Fault Tolerant

Central Saga Orchestrator in RESTful Architecture,” Conf. Open

Innov. Assoc. Fruct, vol. 2020-April, pp. 278–283, 2020, doi:

10.23919/FRUCT48808.2020.9087389.

[6] R. Mufrizal and D. Indarti, “Refactoring Arsitektur Microservice Pada

Aplikasi Absensi PT. Graha Usaha Teknik,” J. Nas. Teknol. dan Sist.

Inf., vol. 5, no. 1, pp. 57–68, 2019, doi:

10.25077/teknosi.v5i1.2019.57-68.

[7] I. F. Rozi, R. Ariyanto, A. N. Pramudita, D. R. Yunianto, and I. F.

Putra, “Implementation of microservices architecture on certification

information system (case study: LSP P1 State Polytechnic of Malang),”

IOP Conf. Ser. Mater. Sci. Eng., vol. 732, no. 1, pp. 0–6, 2020, doi:

10.1088/1757-899X/732/1/012085.

[8] M. Mena, A. Corral, L. Iribarne, and J. Criado, “A Progressive Web

Application Based on Microservices Combining Geospatial Data and

the Internet of Things,” IEEE Access, vol. 7, pp. 104577–104590, 2019,

doi: 10.1109/ACCESS.2019.2932196.

1242

[9] Z. Lyu, H. Wei, X. Bai, and C. Lian, “Microservice-Based

Architecture for an Energy Management System,” IEEE Syst. J., vol.

14, no. 4, pp. 5061–5072, 2020, doi: 10.1109/JSYST.2020.2981095.

[10] Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, “Design and

implementation of open LORa for IoT,” IEEE Access, vol. 7, pp.

100649–100657, 2019, doi: 10.1109/ACCESS.2019.2930243.

[11] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, “Does migrating

a monolithic system to microservices decrease the technical debt?,”

Journal of Systems and Software, vol. 169. 2020, doi:

10.1016/j.jss.2020.110710.

[12] T. Cerny et al., “On Code Analysis Opportunities and Challenges for

Enterprise Systems and Microservices,” IEEE Access, vol. 8, pp.

159449–159470, 2020, doi: 10.1109/ACCESS.2020.3019985.

[13] Y. Gan and C. Delimitrou, “The architectural implications of cloud

microservices,” arXiv, vol. 17, no. 2, pp. 155–158, 2018.

[14] A. Vivas and J. Sanabria, “A Microservice Approach for a Cellular

Automata Parallel Programming Environment,” Electron. Notes Theor.

Comput. Sci., vol. 349, 2020, doi: 10.1016/j.entcs.2020.02.016.

[15] J. Herrera and G. Molto, “Toward Bio-Inspired Auto-Scaling

Algorithms: An Elasticity Approach for Container Orchestration

Platforms,” IEEE Access, vol. 8, pp. 52139–52150, 2020, doi:

10.1109/ACCESS.2020.2980852.

[16] A. Smid, R. Wang, and T. Cerny, “Case Study on data communication

in microservice architecture,” Proc. 2019 Res. Adapt. Converg. Syst.

RACS 2019, no. June 2020, pp. 261–267, 2019, doi:

10.1145/3338840.3355659.

[17] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs.

Microservice Architecture: A Performance and Scalability Evaluation,”

IEEE Access, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3152803.

[18] N. Nikolakis et al., “A microservice architecture for predictive

analytics in manufacturing,” in Procedia Manufacturing, 2020, vol. 51,

doi: 10.1016/j.promfg.2020.10.153.

[19] P. Sha, S. Chen, L. Zheng, X. Liu, H. Tang, and Y. Li, “Design and

Implement of Microservice System for Edge Computing,” in IFAC-

PapersOnLine, 2020, vol. 53, no. 5, doi: 10.1016/j.ifacol.2021.04.137.

[20] N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive Microservice

Scaling for Elastic Applications,” IEEE Internet Things J., vol. 7, no.

5, pp. 4195–4202, 2020, doi: 10.1109/JIOT.2020.2964405.

[21] “Communication in a microservice architecture,” Microsoft

Documentation Website, 2020.

[22] K. Galbraith, “3 methods for microservice communication,”

Logrocket Website, 2019.

[23] G. Ortiz, J. A. Caravaca, A. Garcia-De-Prado, F. Chavez De La O, and

J. Boubeta-Puig, “Real-time context-aware microservice architecture

for predictive analytics and smart decision-making,” IEEE Access, vol.

7, 2019, doi: 10.1109/ACCESS.2019.2960516.

[24] E. Djogic, S. Ribic, and D. Donko, “Monolithic to microservices

redesign of event driven integration platform,” 2018 41st Int. Conv.

Inf. Commun. Technol. Electron. Microelectron. MIPRO 2018 - Proc.,

pp. 1411–1414, 2018, doi: 10.23919/MIPRO.2018.8400254.

[25] Choreography pattern - Azure Architecture

Center", Docs.microsoft.com, 2020. [Online]. Available:

https://docs.microsoft.com/en-us/azure/architecture/patterns/

choreography. [Accessed: 06- Dec- 2020]

[26] C. K. Rudrabhatla, “Comparison of event choreography and

orchestration techniques in Microservice Architecture,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 8, 2018, doi:

10.14569/ijacsa.2018.090804.

[27] P. Valderas, V. Torres, and V. Pelechano, “A microservice

composition approach based on the choreography of BPMN

fragments,” Inf. Softw. Technol., vol. 127, 2020, doi:

10.1016/j.infsof.2020.106370.

[28] F. Dai, Q. Mo, Z. Qiang, B. Huang, W. Kou, and H. Yang, “A

Choreography Analysis Approach for Microservice Composition in

Cyber-Physical-Social Systems,” IEEE Access, vol. 8, pp. 53215–

53222, 2020, doi: 10.1109/ACCESS.2020.2980891.

[29] E. Lee, P. Tan, Y. Cheng, and X. XU, “Web Service Implementation

Methodology,” Organ. …, no. September, pp. 1–35, 2005.

[30] A. Avritzer et al., “Scalability Assessment of Microservice

Architecture Deployment Configurations: A Domain-based Approach

Leveraging Operational Profiles and Load Tests,” J. Syst. Softw., vol.

165, 2020, doi: 10.1016/j.jss.2020.110564.

1243

