
Vol.12 (2022) No. 2

ISSN: 2088-5334

Performance Analysis of Deep Learning-based Object Detectors on

Raspberry Pi for Detecting Melon Leaf Abnormality

Hanif Rahmat a, Sri Wahjuni a,*, Hendra Rahmawan a
a Department of Computer Science, IPB University, Bogor, 16680, Indonesia

Corresponding author: *my_juni04@apps.ipb.ac.id

Abstract— Melon requires intensive treatment with a high cost of maintenance. Digital image processing with deep learning can help

handle diseases in melon plants efficiently. Deep-learning-based object detection has significantly better accuracy than the traditional

one. However, the deep-learning-based approach leads to high computational and storage resources consumption. Speed and accuracy

become tradeoffs to deal with its implementation on devices with limited computing capabilities like Raspberry Pi. This study

comparatively analyzes deep-learning-based object detection algorithm performance implemented on a limited computing device,

namely Raspberry Pi. The detected object in this study is melon leaves which are classified into two categories, namely abnormal and

normal. The experiment was conducted using Faster R-CNN, Single Shot Multibox Detection (SSD), and YOLOv3. The results showed

that Faster R-CNN had the highest mAP (~49 %) that ran ~2.5 seconds for an image but had the highest resource usage. Since accuracy

is more important than time complexity in melon leaf detection, Faster R-CNN can be recommended as the best object detection

algorithm to implement on Raspberry Pi. However, SSD is a fast algorithm with considerable accuracy for real-time detection. In

addition, it had not only fast computational time, but SSD MobileNetV2 also spent the least resource usage. Although YOLOv3 had a

significantly better running time (0.5 s) which made YOLOv3 the fastest algorithm, it had too low mAP (below 20%). Therefore,

YOLOv3 is not recommended for melon leaf abnormality detection since it can allow more detection errors to occur.

Keywords— Faster R-CNN; melon; object detection; Raspberry Pi; SSD; YOLOv3.

Manuscript received 25 Nov. 2020; revised 12 Jun. 2021; accepted 7 Sep. 2021. Date of publication 30 Apr. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Melon (Cucumis melo L.) is one of the most important fruit

crops in many countries over the world, like Indonesia [1],

China [2], Turkey [3], and Brazil [4]. Melon is a widely well-

known plant whose fruit has a great vogue by people

worldwide. The melon plant can be found worldwide,

especially in subtropical and tropical areas. Melon fruit is rich

in fiber, minerals, beta-carotene, and vitamin C, which are
beneficial to health and favorable for diet [1]. Furthermore,

melon is considered one of the potential horticultural plants

for extensive economic benefits [1]–[4].

However, melon is a plant species that is very sensitive to

pests and diseases [5]. Pests and diseases damage parts of a

melon plant, such as its leaf. Their occurrence leads to a

decrease in quantity and the quality of melon fruit production.

In the worst case, they can kill the plant itself [1]. Moreover,

catastrophic pests and diseases in a melon can be responsible

for serious economic losses [2].

Precise identification of plant diseases at the first
appearance is a very important effort to manage the diseases

efficiently [6]. Pests, diseases, or nutrient deficiencies can

cause plant abnormalities. A disease or abnormality in a plant

can be indicated by changes in leaf color or a particular pattern,

such as spots indicating a disease in the plant. Since melon

requires intensive treatment with a high cost of maintenance,

it needs an efficient method to prevent or handle the diseases.

One of the methods to identify plant diseases is using

digital image processing techniques [7]. In computer vision,

deep-learning-based methods with convolutional neural

networks (CNNs) have replaced traditional methods with
hand-crafted features [8]. Many tasks can be done with a deep

learning approach, including image classification, object

detection, regression, etc. With large amounts of data

availability and high computing hardware, object detection

with a deep learning approach has significantly outperformed

the traditional approach in terms of accuracy and precision [8].

Deep learning for object detection has recently gained big

attention in agriculture [9]–[11]. Artificial intelligence, which

leads to system automation, is considered a state-of-the-art

572

method for efficient solutions to agricultural problems [12].

However, research about object detection with deep learning,

especially on agriculture problems, most are still at the model

development and evaluation stage, which used high

computing devices like GPU to test the model. This paper

discusses the performance of deep-learning-based object

detection algorithms implemented on a low-cost device, i.e.,

Raspberry Pi, for detecting melon leaf abnormality.

Several studies concerning object detection problems have

been done, including in the fields related to the agricultural

sector. Single Shot Multibox Detector (SSD) has been
successfully implemented to detect diseases in cassava

through leaf images [9]. A study by Arsenovic et al. [10]

focusing on plant disease detection stated that two-stage

detectors such as Faster Region-based CNN (Faster R-CNN)

outperformed one-stage methods such as YOLOv3, SSD, and

RetinaNet. Arsenovic et al. [10] conducted various object

detection models to detect plant diseases. However, the two-

stage method is mostly computationally slower.

Research related to the implementation of deep-learning-

based object detection on Raspberry Pi was conducted by

Zhong et al. [11] to detect insects. The study aimed to count
and recognize insects in a greenhouse using the object

detector You Only Look Once (YOLO) and classifier Support

Vector Machine (SVM). The recognition system was then

implemented on Raspberry Pi. The experiment conducted on

six insect species resulted in mean counting accuracy of 92.50%

and mean classification accuracy of 90.18%. Raspberry Pi's

detection and recognition process took about five minutes

[11].

In spite of gaining significantly better accuracy than the

traditional approach, the deep learning approach leads to

significantly higher time computation and memory
consumption. This becomes a challenge when the deep

learning method is implemented on devices with limited

computing capabilities such as Raspberry Pi, which has

limitations in hardware resources like CPU and memory [13].

Therefore, this research aims to conduct a comparative

analysis of the performance of deep-learning-based object

detection algorithms on Raspberry Pi to detect melon leaf

abnormality.

A similar idea has been proposed by He et al. [14] using

deep learning methods to detect oilseed rape pests. Since there

was no significant gap between the models' accuracy, the

optimal model (SSD w/Inception) was chosen considering its
computational speed for application on the Android platform

[14]. However, we employed three popular and well-

established algorithms, i.e., Faster R-CNN, SSD, and

YOLOv3 [15]–[17]. There might be a big enough variance in

the models results when the case at hand detects melon leaf

abnormality because of the dataset complexity. For example,

Faster R-CNN would improve accuracy since it can extract

richer features, but it might run slower. In addition, the

implementation of deep learning models on GPU might give

different results than that on low-cost devices. Thus, it is

important to implement all the models on the low-cost device,
i.e., Raspberry Pi, and then analyze their performance

considering the tradeoff between accuracy, computational

time, and resource usage.

Raspberry Pi is a low-cost computer device suitable for

implementation in robotics and the Internet of Things (IoT).

Robotics and IoT, along with artificial intelligence and

machine learning, support the advancement in smart farming

towards the development of agriculture 5.0 [12], [18].

This research is one of the research series concerning

surveillance robot development for melon plants. The robot

will be assigned to monitor the condition of melon plants

during the growth period. The robot's detection task relies on

the image taken through a camera mounted on the robot. The

image is then analyzed using the object detection method so

that the robot can provide information about the leaf

abnormality. The robot can follow up the information from
relevant treatments like pruning abnormal leaf or sending

early warning alerts. The results of this research help suggest

deep-learning-based object detection algorithms that are

optimal to be embedded in the surveillance robot based on a

tradeoff between several aspects such as accuracy,

computational speed, and resource usage.

II. MATERIALS AND METHOD

A. Dataset

The dataset used in this study includes images data of a

group of melon leaves acquired from iSurf Lab (IoT for Smart

Urban Farming Laboratory), Department of Computer

Science IPB University, and Agribusiness and Technology

Park (ATP) IPB, Indonesia. The images were captured using

Raspberry Pi camera v1.3 (5-megapixel image resolution),

which produces images with the width and height,

respectively, 2,592 and 1,944 pixels. The capturing process

was conducted early afternoon (from 11.00 WIB) when the

sunlight was sufficient to brighten the environment. At the

time of data acquisition, the age of melon plants at iSurf Lab

was around 3-4 weeks after planting, while at ATP, the plants
were around 7-8 weeks after planting.

B. Data Annotation

In object detection, image data annotation assigns relevant

bounding boxes and specific class labels for each object in an

image. Each image was annotated using labeling, a tool for

image data annotation. Each detected leaf was classified as

either abnormal or normal in this study.

Abnormal melon plants usually show several symptoms in
the leaves that indicate an abnormality. The abnormality may

be caused by pests, diseases, or nutrient deficiency. Generally,

among the abnormality symptoms are color changes of the

leaves which may be turning yellowish, brownish, pale green

or dark green at the whole or some parts of the leaf. For

example, melon leaves with downy mildew disease may turn

yellow, greasy, and angular dots. Plant with K (potassium)

deficiency may have a brownish color of the leaves at the

marginal area [5]. In addition, torn or blotchy leaves may

indicate abnormal except for white spots caused by spraying

liquid such as pesticide. The leaves with such abnormality

symptoms were categorized as abnormal. Otherwise, they
were labeled as normal if no such abnormality indication was

found.

To make it easier, detection considers the position of the

leaf objects to be detected. The priority leaf objects to be

detected are plants planted on growing media closest to the

camera. The plants in the next line from the camera are

optional or the next priority to be detected, while plants

573

located further away are not labeled. Because the

characteristic of the objects is dense and piled up, only those

visible from the front are detected. Furthermore, every

detected object must be clearly identified as an either

abnormal or normal leaf.

C. Training Object Detection Model

The dataset was randomly split for training and testing with

proportions respectively 0.8:0.2. Thus, from 522, the training
and testing dataset was 417 and 105. The object detection

process used TensorFlow 1.0 as a machine learning

framework. Source code for processing YOLOv3 detector is

available at Wizyoung [19], while Faster R-CNN and SSD

used TensorFlow Object Detection API, which is available at

TensorFlow [20].

The most effective and efficient way to train robust CNN

object detectors is to use transfer learning. Transfer learning

allows the adaption of a pre-trained deep learning model

previously trained from scratch using larger datasets. The pre-

trained model is then trained using smaller datasets different
from the previous datasets used to train the model from

scratch [21]. Several studies have demonstrated that using the

transfer learning method to train object detection models for

leaf issues improved the performance of the models [22], [23].

In this study, transfer learning was adapted to train object

detection models. The pre-trained models were trained on the

COCO dataset for Faster R-CNN and SSD [24], while the

YOLOv3 pre-trained model is available at Redmon and

Farhadi [25]. The pre-trained models were then trained using

the melon leaf dataset. The training process was conducted

using the facilities of High-Performance Computing (HPC)

Indonesian Institute of Sciences (LIPI).
In addition, training object detection models were

conducted with the data augmentation technique since it could

increase the amount of training data so that the models'

accuracy logically rises [26]. The augmentation technique

used here was a random horizontal flip.

1) Anchor/Default/Prior Boxes: Different methods

defined the initial anchor boxes for each algorithm. Initial

anchor boxes were set using scales and aspect ratios for

training Faster R-CNN by calculating anchor width (w) and

anchor height (h) as Equations 1 and 2. The size of the anchor

base (width × height) was 256 × 256. In this study, a
combination of 3 scales and aspect ratios (0.5, 1.0, 2.0) was

used to obtain 9 initial anchor boxes.

� = ����� × 	��
��� ���� × ���� ���ℎ� ����ℎ (1)

ℎ = ����� 	��
��� ���� ⁄ × ���� ���ℎ� ℎ���ℎ� (2)

To make predictions in training SSD, 6 layers of feature

maps were used. The experiment used the minimum scale

(s���) of 0.2 and the maximum scale (s���) of 0.95. Five

aspect ratios were defined for the default boxes defined as

�� ∈ �1,2,3, #
$, #

%&. The initial prior boxes for YOLOv3 were

obtained from k-means clustering results on the bounding

boxes of the training dataset. Intersection over Union (IOU)

value was used as distance function instead of Euclidean

function, which is commonly used for k-means. In this study,
the number of selected clusters was 9, so there were 9 prior

boxes to make predictions. The 9 clusters are: (18 × 14), (32

× 21), (39 × 36), (54 × 28), (57 × 51), (84 × 42), (78 × 73),

(106 × 66), (129 × 109).

2) Parameter Configuration: Some configurations of

training parameters were set up as shown in Table I. However,

there are no standard rules in determining the parameter

values. This still makes deep learning methods inefficient

since it has to experiment with various parameter values for

one case. Sometimes one researcher differs from another in

determining parameter values according to their respective

considerations, even though it is not uncommon for
researchers to explain such considerations. Likewise, the

same parameter values do not always lead to the same result

for several implementations with different kinds of a dataset.

TABLE I
PARAMETER CONFIGURATION

Algorithm Backbone Input size
Batch

size

Total

steps

Faster R-
CNN

InceptionV2,
ResNet50

Min: 600
Max: 1,024

1 10,000

SSD
InceptionV2,
MobileNetV2

300 × 300 16 10,000

YOLOv3 Darknet53 416 × 416 6 ~10,000

Faster R-CNN used an input size of 600 pixels for the

shorter edge, while the larger edge is resized based on the

scale [27]. For example, if the original image size is 800 ×

1,000 pixels, the input for Faster R-CNN becomes 600 × 750

pixels. In this study, the minimum input dimension was 600

pixels, while the maximum was 1,024 pixels since the original

image was too large. This means that each image will be

resized so that the shorter edge is 600 pixels, as used by Ren

et al. [27]. Meanwhile, if the larger edge exceeds 1,024, then

the image will be resized so that the maximum size is 1,024.
For instance, if the image size is 2,592 × 1,944 pixels, the

input size for Faster R-CNN will become 1,024 × 768 pixels.

Input size for SSD in this study was the same as that used

by Liu et al. [28], 300 x 300. In Liu et al. [28], the experiment

of SSD was done using 300 x 300 and 500 x 500 input sizes.

The larger input size, as usual, resulted in better accuracy

because more information can be extracted from the image,

despite leading to longer running time. However, this study

used 300 × 300 pixels image size for faster running time

regarding the model implementation on a limited computing

device, namely Raspberry Pi. Moreover, YOLOv3 used an
input size of 416 × 416 pixels as already used in [29].

Minibatch stochastic methods or simply minibatch

methods are optimization algorithms that use training set

samples to estimate the gradient [30]. In the object detection

learning process, batch size, which commonly refers to the

minibatch size, can be specified from one onwards. Usually,

the selected batch size is more than one but less than the entire

training data. Mostly it is the closest to the power of 2, such

as 8, 16, 32, 64. Different batch sizes usually take effect on

training time. A larger batch size commonly leads to the

longer time needed for the training process to converge.

However, it allows maintaining stability when the
convergence has been reached because of a more accurate

gradient estimate.

On the contrary, a small batch size generally speeds up the

learning process but with a volatile convergence curve of

574

training loss or accuracy because of high variance in the

gradient estimation. Small learning rate might be required for

the training process with a small batch size to keep the

learning process stable [30], [31]. For the experiment, Faster

R-CNN used minibatch size ' = 1 taking into account that

the training process employed 1 GPU. Moreover, SSD and

YOLOv3 models were trained using minibatch sizes 16 and 6,

respectively.

The stop condition used for training the models was set up

into 10,000 steps. The training loss usually showed no
significant changes during the experiment after the 7,000th

step. Thus, the number of 10,000 steps was considered to be

enough for the stop condition threshold.

D. Model Evaluation

In general, object detection models were evaluated by

calculating the precision and recall. In object detection,

precision and recall are two important model evaluation

metrics used to measure how well a detected object matches
a reference object. Precision can be defined as a proportion

between correctly detected positive classes among all

detected positive classes, while recall refers to the proportion

of correctly detected objects among all objects that should be

detected [32]. Precision and recall are calculated using

Equations 3 and 4 based on Table 2 [14].

TABLE II
CONFUSION MATRIX

 Actual positive Actual negative

Predicted positive
True positive

(TP)

False-positive

(FP)

Predicted negative
False-negative

(FN)

True negative

(TN)

������� = TP
TP + FP (3)

����� = TP
TP + FN

(4)

Average precision (AP) is used as a metric to measure the

performance of the object detection model for a given class.

An AP score is defined based on the mean of the precision
scores of a set of equidistant recall values (0, 0.1, 0.2, ..., 1)

[14]. AP score is calculated with Equations 5 and 6 [14].

-. = 1
11 / .0123�4()

�∈{8,8.#,8.$,...,#}
 (5)

Pinterp(r) or interpolated precision is defined as

.0123�4 = .(̃)�̃:�̃=�>?@ (6)

where P(̃) is the precision measured at recall (̃).

To evaluate multi-class detection, mean average precision

(mAP) is used as the average value of all AP values [14]. In

this study, the calculation of mAP was processed using GPU.

E. Implementation on Raspberry Pi

Object detection task was carried out on Raspberry Pi to

analyze the capability of such device in running object

detection algorithms. At this implementation, the

computation time of the algorithms when performing

detection inference was measured, hereinafter referred to as

inference time. The inference phase means a phase when an

object detector infers relevant bounding boxes and class labels

of objects detected in an image. Furthermore, here resources

usage was also measured. Memory consumption and CPU

(Central Processing Unit) time are important parameters to

measure how many resources a program or task uses. Thus,

this study involves those two aspects to analyze the algorithm

performance on resources usage.

For efficiency purposes, instead of using the entire test set,

the detection process on Raspberry Pi was conducted using 10
images randomly selected from the test data. The computation

time was measured each time the detector performed

inference for each image. After that, an average computation

time was calculated from the obtained inference time data.

Moreover, the detection process of one test image was carried

out to measure the resources usage of each detector.

Parameters measured included CPU (Central Processing Unit)

time and RSS (Resident Set Size). The resources usage was

monitored and recorded while the detector program was

running.

III. RESULTS AND DISCUSSION

Mean average precision (mAP) is an evaluation metric for

the object detection task. The mAP score is obtained from

averaging the AP scores of all classes. This study used an IOU

threshold 0.6 for non-max suppression (NMS) process to

calculate the mAP score. Based on Table 3 Faster R-CNN has

the highest mAP compared with the other methods, while the

lowest mAP belongs to YOLOv3. Faster R-CNN with

ResNet50 as the feature extractor is the most accurate model
for detecting melon leaves and their class labels with a mAP

of 48.85%. This indicates that the two-stage models can

obtain more accurate detection results than the one-stage

models. As shown in Fig. 1, the two-stage methods gain up to

two times higher mAP than the one-stage methods. For the

one-stage, SSD with MobileNetV2 achieves higher mAP than

that with InceptionV2 by the difference of ~ 6%.

MobileNetV2 is probably better than InceptionV2 in feature

extraction. The inverted Residual Block proposed by Sandler

et al. [33] may enrich the features extracted from such a

complex image.

TABLE III

AP AND MAP VALUES OF EACH METHOD

Method Backbone
APnormal

(%)

APabnormal

(%)
mAP (%)

Faster R-
CNN

InceptionV2 47.26 50.2 48.73
ResNet50 45.83 51.86 48.85

SSD
InceptionV2 23.83 30.25 27.04

MobileNetV2 30.52 35.81 33.16

YOLOv3 Darknet53 15.26 17.85 16.56

Distinguishing whether a leaf is abnormal or normal from

many leaves and locating its position among them is a fairly
complex problem. It is necessary to define the leaf object

distinguish its class and determine which location must be

detected. The background may look similar to the positive

objects because there are leaf objects in the background and

foreground in the image of a group of leaves. As in the data

annotation process, not all leaves were labeled. In addition, a

pile of leaves increases the density of the detection objects.

575

With such data characteristics, two-stage detectors that are

powerful in the aspect of extracted features richness can result

in better accuracy than one-stage detectors.

Meanwhile, YOLOv3 has the smallest mAP (16.56%)

compared to the other methods. This score is two times

smaller than SSD MobileNetV2. For cases that require high

accuracy, such as leaf abnormality detection, YOLOv3 model

is not recommended because it will result in more detection

errors. It seems that YOLOv3 is not very good at extracting

information (features) from complex and dense data such as

leaves. This could be because the prior boxes at each scale
perform poorly when retrieving information. Unlike SSD,

which used six default boxes in each feature map layer,

YOLOv3 used fewer (three) prior boxes at each scale to detect

objects so it could not dig up more information. The

background looks similar to positive objects in leaf data,

which makes it complex, especially for one-stage detectors.

In addition, YOLOv3 performs poorly with NMS operation

on dense object areas, leading to a higher error rate when

detecting dense objects [34]. YOLOv3 produced multiple

detections on the same object in this experiment, as seen in

the detection results. In Nguyen et al. [35], YOLOv3
experienced a dramatic decrease in mAP when IOU was

increased from 0.5 to 0.75 because YOLOv3 did not perform

well during localization.

Fig. 1 Comparison of mAP values

Although the two-stage method outperforms the one-stage

method in terms of accuracy, the two-stage method is mostly

poor in terms of computation time. It can be seen that the

computation time required by the two-stage method (Faster

R-CNN) to perform detection is longer than the one-stage

methods (SSD and YOLOv3). The two-stage method

performs the proposal region stage and classification and
regression separately, thus increasing the computation time.

At each stage, the two-stage method performs classification,

the first is to determine the object's existence, and the second

is to assign the class label. Table 4 shows the computation

time comparison for each method with Faster R-CNN

ResNet50 as a benchmark.

For the one-stage method, YOLOv3 has the fastest

computation time with a computation speed of 0.5 seconds,

up to five times faster than the other methods (Faster R-CNN

and SSD MobileNetV2) shown in Table 8. Although

YOLOv3 is the fastest, the mAP value of it is still very small

(below 20%). Thus, the YOLOv3 method is not
recommended for detecting leaf abnormality of melon plants.

SSD with InceptionV2 takes 1.2 times faster inference than

MobileNetV2 but has ~6% smaller mAP. Because in case of

abnormality detection, accuracy is more important, it can be

said that SSD MobileNetV2 is better than SSD InceptionV2

because of higher mAP but with considerable computation

time for implementation on limited computing devices like

Raspberry Pi.

Faster R-CNN requires the longest computation time.

Compared to YOLOv3, Faster R-CNN performs inference

five times longer but has mAP value up to three times higher.

Each algorithm is stronger in one aspect and weaker in
another. However, in this study, accuracy takes precedence

over computation time. Faster R-CNN ResNet50 has the

highest mAP value with a slightly longer computation time

than SSD MobileNetV2 SSD, about 1.2 times longer. Faster

R-CNN with ResNet50 and InceptionV2 has nearly the same

performance with mAP of ~49% and inference time of ~2.5

seconds, but the Faster's smaller scale is considered R-CNN

ResNet50 is better because it takes 84 milliseconds faster. In

this case, it seems that the residual block of the ResNet50

network has a role in raising the accuracy [36].

TABLE IV
INFERENCE TIME OF EACH METHOD

Method Backbone
Inference time

(s) per image
Speed up

Faster R-CNN
InceptionV2 2.591 1×
ResNet50 2.507 1×

SSD
InceptionV2 1.716 1.5×

MobileNetV2 2.07 1.2×

YOLOv3 Darknet53 0.522 4.8×

Fig. 2 Inference time comparison

In this case, it can be seen that Faster R-CNN is applicable

to limited computing devices such as Raspberry Pi because it

has the highest level of accuracy with considerable

computation time. However, SSD is preferable for real-time

detection such as on video because it ran faster than Faster R-

CNN yet had considerable accuracy.

Fig. 3 shows a scatter plot of mAP against computation

time of the object detection algorithms. Fig. 3 indicates that

computation time is directly proportional to mAP; the higher

the mAP value, the longer the computation time required.

Faster R-CNN ResNet50 is the model with the best mAP,
which is slightly faster than the Faster R-CNN InceptionV2.

Faster R-CNN ResNet50 is highly recommended for cases

like melon leaf abnormality detection if data transmission and

processing, for example, a surveillance robot, is carried out in

576

no less than five minutes. This does not matter because signs

or symptoms of abnormalities in plant leaves can still be

detected, even if not in seconds. However, the SSD method is

recommended if faster processing is desired, such as for a

real-time video.

In summary, for cases that require high accuracy, the two-

stage Faster R-CNN method can be the best alternative with

considerable computation time for implementation on a

limited computing device such as Raspberry Pi. As for real-

time detection needs such as video, SSD can be the best

alternative to use.
Fig. 4 shows the amount of memory (RAM) used by each

object detection program when it was run. The x-axis

represents the time during which the program was running,

every second, starting from the time the program was

executed until it produced object detection output. Meanwhile,

the y-axis shows the number of RSS (MiB) allocated to run

each detection program. RSS represents non-swap memory or

RAM used by the task [37]. In general, in the early seconds,

the memory usage is more dominant, indicated by the more

volatile movement of RSS graphic than CPU usage, which

tends to be stable. At this early stage, the program usually
loads modules or packages and loads the object detection

model. The process of loading packages and the model is less

burdensome on CPU because there are no commands for

complex computation operations. Thus, the complexity here

is focused on memory.

Fig. 3 Scatter plot of inference time against mAP

Fig. 4 Memory usage of each method

The largest memory usage is owned by Faster R-CNN

ResNet50 where the maximum usage of RSS reaches 981

MiB. This is reasonable because Faster R-CNN is a two-stage

model with a complex architecture (namely two stages:

proposal region and classification) so that it affects more

memory usage, coupled with ResNet50 as a backbone that has

a deeper network than InceptionV2 [14]. In addition, the

Faster R-CNN ResNet50 detection process requires more

memory, as seen in Figure 2, which shows the movement of

RSS graphics in the final seconds is higher.

The smallest memory usage belongs to YOLOv3 and SSD

MobileNetV2, with a maximum memory usage of 502 MiB

and 551 MiB, respectively. YOLOv3 being lighter could be
because the design structure of the program algorithm is more

efficient than Faster R-CNN and SSDs that use Object

Detection API. As seen in Fig. 4, the movement of YOLOv3

RSS significantly increases after the 25th second, which is

likely when the program is doing the detection process, in

contrast to SSD and Faster R-CNN graphics which have

similar RSS fluctuation patterns in the initial seconds (before

the 25th or 30th second). In addition, it may be due to the

efficient YOLOv3 model as a one-stage model even though

from the backbone aspect, the size of Darknet53 is even larger

than ResNet50 [38]. Moreover, the lighter SSD MobileNetV2
is possible because of the efficient SSD model as a one-stage

object detector and the MobileNetV2 architecture with mobile

architecture designed for devices with low computing

capabilities [33].

Fig. 5 shows the percentage of CPU usage by object

detection programs when run. Percentage of CPU usage

means the percentage of CPU time used by the task [37]. In

general, after the 25th second, the memory usage starts to

decline, followed by the movement of the CPU percentage

graph towards the peak. This indicates that the detection

process is running. On Raspberry Pi, the image processing is
conducted on the CPU, so various mathematical calculations

are carried out by deep learning that is burdening the CPU.

Fig. 5 CPU time of each method

Two-stage detection approach and a deep network

backbone make Faster R-CNN ResNet50 have the highest

CPU time with CPU usage percentage of 99% (Table 5). SSD

MobileNetV2 is the algorithm that consumes the least CPU
resources with a percentage of 48.5%. On the other hand,

although YOLOv3 consumes the least memory resource, it

has a maximum CPU time of 85%, which is greater than the

SSD-based methods have. Thus, it can be concluded that from

the aspect of resource usage, SSD MobileNetV2 is the best

577

method to be implemented on limited computing devices such

as Raspberry Pi. Apart from having sufficient mAP, SSD

MobileNetV2 uses resources more efficiently than the other

models.

TABLE V
MAXIMUM USAGE OF CPU AND RSS

Method Backbone CPU time (%)
RSS

(MiB)

Faster R-CNN InceptionV2 97.25 659
 ResNet50 99 981

SSD InceptionV2 60 659
 MobileNetV2 48.5 551

YOLOv3 Darknet53 85 502

Fig. 6(a) shows a test image with ground truth boxes, while

Fig. 6(b)-(f) shows the image with predicted boxes of each

method. The detection was done using IOU threshold of 0.6

for NMS operation. Many multiple boxes are assigned to the

same objects in YOLOv3 prediction. In case the overlapping

boxes are too many, it indicates that the model poorly

performs the detection. However, the number of bounding

boxes can be reduced by decreasing IOU threshold for NMS
operation.

(a) (b)

(c) (d)

Fig. 6 Image with (a) ground truth boxes, detection results of (b) Faster R-

CNN InceptionV2, (c) Faster R-CNN ResNet50, and (d) SSD InceptionV2

IV. CONCLUSIONS

The results showed that the mean average precision (mAP)

value is directly proportional to the running time. That is, the

algorithm with higher mAP would require a longer running

time. Faster R-CNN had the highest mAP (~49 %) that ran

~2.5 seconds for an image, yet with the highest resources

usage. Considering the accuracy, Faster R-CNN can be

recommended as the best object detection algorithm in case

accuracy is more important than time complexity, including

melon leaf abnormality. However, for real-time detection

such as on video, SSD can be considered a fast algorithm with

considerable accuracy that can be implemented on limited
computing devices such as Raspberry Pi. Although YOLOv3

had significantly better running time (0.5 s) which made

YOLOv3 the fastest algorithm discussed here, it had too low

mAP below 20%. Therefore, in this case, YOLOv3 is not

recommended for melon leaf abnormality detection since it

would lead to more detection errors.

However, future research can concentrate on the detection

of more specific types of leaf abnormality in the melon plant.

The data annotation process can involve experts to minimize

errors when assigning bounding boxes and class labels. In

addition, for a better experiment, various training techniques

can be applied by increasing the number of datasets, changing

the input size, trying more data augmentation techniques, or

using different backbones. Adjusting the model networks can

also be a good alternative for better accuracy and running time.

ACKNOWLEDGMENT

The computation in this work has been done using the

facilities of HPC LIPI, Indonesian Institute of Sciences (LIPI).

The dataset used in this study is acquired from the iSurf Lab

(IoT for Smart Urban Farming Laboratory) Department of

Computer Science FMIPA IPB and Agribusiness and

Technology Park (ATP) IPB.

REFERENCES

[1] B. S. Daryono and S. D. Maryanto, Keanekaragaman dan Potensi

Sumber Daya Genetik Melon. Yogyakarta: Gadjah Mada University

Press, 2017.

[2] Q. Zhao et al., “Biocontrol of Fusarium wilt disease for Cucumis melo

melon using bio-organic fertilizer,” Appl. Soil Ecol., vol. 47, no. 1, pp.

67–75, Jan. 2011, doi: 10.1016/j.apsoil.2010.09.010.

[3] S. Dinc et al., “the Rootstock Effects on Agronomic and Biochemical

Quality Properties of Melon Under Water Stress,” Fresenius Environ.

Bull., vol. 27, no. 7, pp. 5008–5021, 2018.

[4] M. J. de Santana, G. de A. Bocate, M. A. Sgobi, S. S. de Souza, and T.

T. B. Valeriano, “Irrigation management of muskmelon with

tensiometry,” Rev. Agrogeoambiental, vol. 9, no. 3, 2017, doi:

10.18406/2316-1817v9n32017965.

[5] A. Balliu and G. Sallaku, “Early production of melon, watermelon and

squashes in low tunnels,” in Good Agricultural Practices for

greenhouse vegetable production in the South East European

countries, 230th ed., W. Baudoin, A. Nersisyan, A. Shamilov, A.

Hodder, and D. Gutierrez, Eds. Rome: Food and Agriculture

Organization of the United Nations, 2017, pp. 341–351.

[6] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning

for Image-Based Plant Disease Detection,” Front. Plant Sci., vol. 7,

Sep. 2016, doi: 10.3389/fpls.2016.01419.

[7] S. D. Khirade and A. B. Patil, “Plant Disease Detection Using Image

Processing,” in 2015 International Conference on Computing

Communication Control and Automation, Feb. 2015, pp. 768–771, doi:

10.1109/ICCUBEA.2015.153.

[8] D. S. Trigueros, L. Meng, and M. Hartnett, “Face Recognition: From

Traditional to Deep Learning Methods,” Oct. 2018, Accessed: Nov. 04,

2020. [Online]. Available: http://arxiv.org/abs/1811.00116.

[9] A. Ramcharan et al., “A Mobile-Based Deep Learning Model for

Cassava Disease Diagnosis,” Front. Plant Sci., vol. 10, Mar. 2019, doi:

10.3389/fpls.2019.00272.

[10] M. Arsenovic, M. Karanovic, S. Sladojevic, A. Anderla, and D.

Stefanovic, “Solving Current Limitations of Deep Learning Based

Approaches for Plant Disease Detection,” Symmetry (Basel)., vol. 11,

no. 7, p. 939, Jul. 2019, doi: 10.3390/sym11070939.

[11] Y. Zhong, J. Gao, Q. Lei, and Y. Zhou, “A Vision-Based Counting and

Recognition System for Flying Insects in Intelligent Agriculture,”

Sensors, vol. 18, no. 5, p. 1489, May 2018, doi: 10.3390/s18051489.

[12] L. Ahmad and F. Nabi, Agriculture 5.0: Artificial Intelligence, IoT,

and Machine Learning. Florida: CRC Press, 2021.

[13] D. Foley and R. O’Reilly, “An evaluation of convolutional neural

network models for object detection in images on low-end devices,” in

CEUR Workshop Proceedings, 2018, vol. 2259, pp. 350–361, [Online].

Available: http://ceur-ws.org/Vol-2259/aics_32.pdf.

[14] Y. He, H. Zeng, Y. Fan, S. Ji, and J. Wu, “Application of Deep

Learning in Integrated Pest Management: A Real-Time System for

Detection and Diagnosis of Oilseed Rape Pests,” Mob. Inf. Syst., vol.

2019, 2019, doi: 10.1155/2019/4570808.

578

[15] U. Alganci, M. Soydas, and E. Sertel, “Comparative research on deep

learning approaches for airplane detection from very high-resolution

satellite images,” Remote Sens., vol. 12, no. 3, p. 458, Feb. 2020, doi:

10.3390/rs12030458.

[16] N. D. Nguyen, T. Do, T. D. Ngo, and D. D. Le, “An Evaluation of

Deep Learning Methods for Small Object Detection,” J. Electr.

Comput. Eng., vol. 2020, 2020, doi: 10.1155/2020/3189691.

[17] M. Li, Z. Zhang, L. Lei, X. Wang, and X. Guo, “Agricultural

greenhouses detection in high‐resolution satellite images based on

convolutional neural networks: Comparison of faster R‐CNN, YOLO

v3 and SSD,” Sensors (Switzerland), vol. 20, no. 17, pp. 1–14, 2020,

doi: 10.3390/s20174938.

[18] V. Saiz-Rubio and F. Rovira-Más, “From smart farming towards

agriculture 5.0: A review on crop data management,” Agronomy, vol.

10, no. 2, p. 207, Feb. 2020, doi: 10.3390/agronomy10020207.

[19] Wizyoung, “Complete YOLOv3 TensorFlow implementation.”

[Online]. Available:

https://github.com/wizyoung/YOLOv3_TensorFlow.

[20] TensorFlow, “Models and examples built with TensorFlow.” [Online].

Available: https://github.com/tensorflow/models/tree/r1.13.0.

[21] Y. Wang, C. Wang, and H. Zhang, “Combining a single shot multibox

detector with transfer learning for ship detection using sentinel-1 sar

images,” Remote Sens. Lett., vol. 9, no. 8, pp. 780–788, Aug. 2018, doi:

10.1080/2150704X.2018.1475770.

[22] V. Ponnusamy, A. Coumaran, A. S. Shunmugam, K. Rajaram, and S.

Senthilvelavan, “Smart Glass: Real-Time Leaf Disease Detection

using YOLO Transfer Learning,” in Proceedings of the 2020 IEEE

International Conference on Communication and Signal Processing,

ICCSP 2020, Jul. 2020, pp. 1150–1154, doi:

10.1109/ICCSP48568.2020.9182146.

[23] M. Buzzy, V. Thesma, M. Davoodi, and J. M. Velni, “Real-time plant

leaf counting using deep object detection networks,” Sensors

(Switzerland), vol. 20, no. 23, pp. 1–14, Dec. 2020, doi:

10.3390/s20236896.

[24] Github, “TensorFlow detection model zoo,” GitHub, 2020.

https://github.com/tensorflow/models/blob/master/research/object_de

tection/g3doc/tf1_detection_zoo.md (accessed Mar. 07, 2021).

[25] J. Redmon and A. Farhadi, “YOLO: Real-Time Object Detection.”

https://pjreddie.com/darknet/yolo/ (accessed Mar. 07, 2021).

[26] B. Zoph, E. D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, and Q. V. Le,

“Learning Data Augmentation Strategies for Object Detection,” 2019,

Accessed: May 31, 2020. [Online]. Available:

http://arxiv.org/abs/1906.11172.

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017,

doi: 10.1109/TPAMI.2016.2577031.

[28] W. Liu et al., “SSD: Single shot multibox detector,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9905 LNCS, pp. 21–37, Dec. 2016, doi:

10.1007/978-3-319-46448-0_2.

[29] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”

2018, Accessed: May 27, 2020. [Online]. Available:

http://arxiv.org/abs/1804.02767.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.

Cambridge: MIT Press, 2016.

[31] J. Brownlee, Better Deep Learning. Train Faster, Reduce Overfitting,

and Make Better Predictions, V1.8., vol. 1, no. 2. 2018.

[32] A. Godil, R. Bostelman, W. Shackleford, T. Hong, and M. Shneier,

“Performance Metrics for Evaluating Object and Human Detection

and Tracking Systems,” Gaithersburg, MD, Jul. 2014. doi:

10.6028/NIST.IR.7972.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–

4520, Jan. 2018, doi: 10.1109/CVPR.2018.00474.

[34] J. Lei, C. Gao, J. Hu, C. Gao, and N. Sang, “Orientation Adaptive

YOLOv3 for Object Detection in Remote Sensing Images,” Springer,

Cham, 2019, pp. 586–597.

[35] K. Nguyen, N. T. Huynh, P. C. Nguyen, K. D. Nguyen, N. D. Vo, and

T. V. Nguyen, “Detecting objects from space: an evaluation of deep-

learning modern approaches,” Electron., vol. 9, no. 4, p. 583, Mar.

2020, doi: 10.3390/electronics9040583.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Dec. 2016,

vol. 2016-Decem, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[37] M. Kerrisk, “Pidstat(1) – Linux manual page,” 2020.

https://man7.org/linux/man-pages/man1/pidstat.1.html.

[38] M. Elgendi et al., “The Performance of Deep Neural Networks in

Differentiating Chest X-Rays of COVID-19 Patients From Other

Bacterial and Viral Pneumonias,” Front. Med., vol. 7, Aug. 2020, doi:

10.3389/fmed.2020.00550.

579

