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Abstract— Melon requires intensive treatment with a high cost of maintenance. Digital image processing with deep learning can help 

handle diseases in melon plants efficiently. Deep-learning-based object detection has significantly better accuracy than the traditional 

one. However, the deep-learning-based approach leads to high computational and storage resources consumption. Speed and accuracy 

become tradeoffs to deal with its implementation on devices with limited computing capabilities like Raspberry Pi. This study 

comparatively analyzes deep-learning-based object detection algorithm performance implemented on a limited computing device, 

namely Raspberry Pi. The detected object in this study is melon leaves which are classified into two categories, namely abnormal and 

normal. The experiment was conducted using Faster R-CNN, Single Shot Multibox Detection (SSD), and YOLOv3. The results showed 

that Faster R-CNN had the highest mAP (~49 %) that ran ~2.5 seconds for an image but had the highest resource usage. Since accuracy 

is more important than time complexity in melon leaf detection, Faster R-CNN can be recommended as the best object detection 

algorithm to implement on Raspberry Pi. However, SSD is a fast algorithm with considerable accuracy for real-time detection. In 

addition, it had not only fast computational time, but SSD MobileNetV2 also spent the least resource usage. Although YOLOv3 had a 

significantly better running time (0.5 s) which made YOLOv3 the fastest algorithm, it had too low mAP (below 20%). Therefore, 

YOLOv3 is not recommended for melon leaf abnormality detection since it can allow more detection errors to occur.  
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I. INTRODUCTION

Melon (Cucumis melo L.) is one of the most important fruit 

crops in many countries over the world, like Indonesia [1], 

China [2], Turkey [3], and Brazil [4]. Melon is a widely well-

known plant whose fruit has a great vogue by people 

worldwide. The melon plant can be found worldwide, 

especially in subtropical and tropical areas. Melon fruit is rich 

in fiber, minerals, beta-carotene, and vitamin C, which are 
beneficial to health and favorable for diet [1]. Furthermore, 

melon is considered one of the potential horticultural plants 

for extensive economic benefits [1]–[4]. 

However, melon is a plant species that is very sensitive to 

pests and diseases [5]. Pests and diseases damage parts of a 

melon plant, such as its leaf. Their occurrence leads to a 

decrease in quantity and the quality of melon fruit production. 

In the worst case, they can kill the plant itself [1]. Moreover, 

catastrophic pests and diseases in a melon can be responsible 

for serious economic losses [2]. 

Precise identification of plant diseases at the first 
appearance is a very important effort to manage the diseases 

efficiently [6]. Pests, diseases, or nutrient deficiencies can 

cause plant abnormalities. A disease or abnormality in a plant 

can be indicated by changes in leaf color or a particular pattern, 

such as spots indicating a disease in the plant. Since melon 

requires intensive treatment with a high cost of maintenance, 

it needs an efficient method to prevent or handle the diseases.  

One of the methods to identify plant diseases is using 

digital image processing techniques [7]. In computer vision, 

deep-learning-based methods with convolutional neural 

networks (CNNs) have replaced traditional methods with 
hand-crafted features [8]. Many tasks can be done with a deep 

learning approach, including image classification, object 

detection, regression, etc. With large amounts of data 

availability and high computing hardware, object detection 

with a deep learning approach has significantly outperformed 

the traditional approach in terms of accuracy and precision [8]. 

Deep learning for object detection has recently gained big 

attention in agriculture [9]–[11]. Artificial intelligence, which 

leads to system automation, is considered a state-of-the-art 
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method for efficient solutions to agricultural problems [12]. 

However, research about object detection with deep learning, 

especially on agriculture problems, most are still at the model 

development and evaluation stage, which used high 

computing devices like GPU to test the model. This paper 

discusses the performance of deep-learning-based object 

detection algorithms implemented on a low-cost device, i.e., 

Raspberry Pi, for detecting melon leaf abnormality. 

Several studies concerning object detection problems have 

been done, including in the fields related to the agricultural 

sector. Single Shot Multibox Detector (SSD) has been 
successfully implemented to detect diseases in cassava 

through leaf images [9]. A study by Arsenovic et al. [10] 

focusing on plant disease detection stated that two-stage 

detectors such as Faster Region-based CNN (Faster R-CNN) 

outperformed one-stage methods such as YOLOv3, SSD, and 

RetinaNet. Arsenovic et al. [10] conducted various object 

detection models to detect plant diseases. However, the two-

stage method is mostly computationally slower.  

Research related to the implementation of deep-learning-

based object detection on Raspberry Pi was conducted by 

Zhong et al. [11] to detect insects. The study aimed to count 
and recognize insects in a greenhouse using the object 

detector You Only Look Once (YOLO) and classifier Support 

Vector Machine (SVM). The recognition system was then 

implemented on Raspberry Pi. The experiment conducted on 

six insect species resulted in mean counting accuracy of 92.50% 

and mean classification accuracy of 90.18%. Raspberry Pi's 

detection and recognition process took about five minutes 

[11].  

In spite of gaining significantly better accuracy than the 

traditional approach, the deep learning approach leads to 

significantly higher time computation and memory 
consumption. This becomes a challenge when the deep 

learning method is implemented on devices with limited 

computing capabilities such as Raspberry Pi, which has 

limitations in hardware resources like CPU and memory [13]. 

Therefore, this research aims to conduct a comparative 

analysis of the performance of deep-learning-based object 

detection algorithms on Raspberry Pi to detect melon leaf 

abnormality. 

A similar idea has been proposed by He et al. [14] using 

deep learning methods to detect oilseed rape pests. Since there 

was no significant gap between the models' accuracy, the 

optimal model (SSD w/Inception) was chosen considering its 
computational speed for application on the Android platform 

[14]. However, we employed three popular and well-

established algorithms, i.e., Faster R-CNN, SSD, and 

YOLOv3 [15]–[17]. There might be a big enough variance in 

the models results when the case at hand detects melon leaf 

abnormality because of the dataset complexity. For example, 

Faster R-CNN would improve accuracy since it can extract 

richer features, but it might run slower. In addition, the 

implementation of deep learning models on GPU might give 

different results than that on low-cost devices. Thus, it is 

important to implement all the models on the low-cost device, 
i.e., Raspberry Pi, and then analyze their performance 

considering the tradeoff between accuracy, computational 

time, and resource usage. 

Raspberry Pi is a low-cost computer device suitable for 

implementation in robotics and the Internet of Things (IoT). 

Robotics and IoT, along with artificial intelligence and 

machine learning, support the advancement in smart farming 

towards the development of agriculture 5.0 [12], [18]. 

This research is one of the research series concerning 

surveillance robot development for melon plants. The robot 

will be assigned to monitor the condition of melon plants 

during the growth period. The robot's detection task relies on 

the image taken through a camera mounted on the robot. The 

image is then analyzed using the object detection method so 

that the robot can provide information about the leaf 

abnormality. The robot can follow up the information from 
relevant treatments like pruning abnormal leaf or sending 

early warning alerts. The results of this research help suggest 

deep-learning-based object detection algorithms that are 

optimal to be embedded in the surveillance robot based on a 

tradeoff between several aspects such as accuracy, 

computational speed, and resource usage. 

II. MATERIALS AND METHOD 

A. Dataset 

The dataset used in this study includes images data of a 

group of melon leaves acquired from iSurf Lab (IoT for Smart 

Urban Farming Laboratory), Department of Computer 

Science IPB University, and Agribusiness and Technology 

Park (ATP) IPB, Indonesia. The images were captured using 

Raspberry Pi camera v1.3 (5-megapixel image resolution), 

which produces images with the width and height, 

respectively, 2,592 and 1,944 pixels. The capturing process 

was conducted early afternoon (from 11.00 WIB) when the 

sunlight was sufficient to brighten the environment. At the 

time of data acquisition, the age of melon plants at iSurf Lab 

was around 3-4 weeks after planting, while at ATP, the plants 
were around 7-8 weeks after planting. 

B. Data Annotation 

In object detection, image data annotation assigns relevant 

bounding boxes and specific class labels for each object in an 

image. Each image was annotated using labeling, a tool for 

image data annotation. Each detected leaf was classified as 

either abnormal or normal in this study. 

Abnormal melon plants usually show several symptoms in 
the leaves that indicate an abnormality. The abnormality may 

be caused by pests, diseases, or nutrient deficiency. Generally, 

among the abnormality symptoms are color changes of the 

leaves which may be turning yellowish, brownish, pale green 

or dark green at the whole or some parts of the leaf. For 

example, melon leaves with downy mildew disease may turn 

yellow, greasy, and angular dots. Plant with K (potassium) 

deficiency may have a brownish color of the leaves at the 

marginal area [5]. In addition, torn or blotchy leaves may 

indicate abnormal except for white spots caused by spraying 

liquid such as pesticide. The leaves with such abnormality 

symptoms were categorized as abnormal. Otherwise, they 
were labeled as normal if no such abnormality indication was 

found. 

To make it easier, detection considers the position of the 

leaf objects to be detected. The priority leaf objects to be 

detected are plants planted on growing media closest to the 

camera. The plants in the next line from the camera are 

optional or the next priority to be detected, while plants 
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located further away are not labeled. Because the 

characteristic of the objects is dense and piled up, only those 

visible from the front are detected. Furthermore, every 

detected object must be clearly identified as an either 

abnormal or normal leaf. 

C. Training Object Detection Model 

The dataset was randomly split for training and testing with 

proportions respectively 0.8:0.2. Thus, from 522, the training 
and testing dataset was 417 and 105. The object detection 

process used TensorFlow 1.0 as a machine learning 

framework. Source code for processing YOLOv3 detector is 

available at Wizyoung [19], while Faster R-CNN and SSD 

used TensorFlow Object Detection API, which is available at 

TensorFlow [20]. 

The most effective and efficient way to train robust CNN 

object detectors is to use transfer learning. Transfer learning 

allows the adaption of a pre-trained deep learning model 

previously trained from scratch using larger datasets. The pre-

trained model is then trained using smaller datasets different 
from the previous datasets used to train the model from 

scratch [21]. Several studies have demonstrated that using the 

transfer learning method to train object detection models for 

leaf issues improved the performance of the models [22], [23].  

In this study, transfer learning was adapted to train object 

detection models. The pre-trained models were trained on the 

COCO dataset for Faster R-CNN and SSD [24], while the 

YOLOv3 pre-trained model is available at Redmon and 

Farhadi [25]. The pre-trained models were then trained using 

the melon leaf dataset. The training process was conducted 

using the facilities of High-Performance Computing (HPC) 

Indonesian Institute of Sciences (LIPI). 
In addition, training object detection models were 

conducted with the data augmentation technique since it could 

increase the amount of training data so that the models' 

accuracy logically rises [26]. The augmentation technique 

used here was a random horizontal flip. 

1)  Anchor/Default/Prior Boxes: Different methods 

defined the initial anchor boxes for each algorithm. Initial 

anchor boxes were set using scales and aspect ratios for 

training Faster R-CNN by calculating anchor width (w) and 

anchor height (h) as Equations 1 and 2. The size of the anchor 

base (width × height) was 256 × 256. In this study, a 
combination of 3 scales and aspect ratios (0.5, 1.0, 2.0) was 

used to obtain 9 initial anchor boxes. 

� = ����� × 	��
��� ���� × ���� ���ℎ� ����ℎ (1) 

ℎ = ����� 	��
��� ���� ⁄ × ���� ���ℎ� ℎ���ℎ� (2) 

To make predictions in training SSD, 6 layers of feature 

maps were used. The experiment used the minimum scale 

(s���) of 0.2 and the maximum scale (s���) of 0.95. Five 

aspect ratios were defined for the default boxes defined as 

�� ∈ �1,2,3, #
$ , #

%&. The initial prior boxes for YOLOv3 were 

obtained from k-means clustering results on the bounding 

boxes of the training dataset. Intersection over Union (IOU) 

value was used as distance function instead of Euclidean 

function, which is commonly used for k-means. In this study, 
the number of selected clusters was 9, so there were 9 prior 

boxes to make predictions. The 9 clusters are: (18 × 14), (32 

× 21), (39 × 36), (54 × 28), (57 × 51), (84 × 42), (78 × 73), 

(106 × 66), (129 × 109). 

2)  Parameter Configuration: Some configurations of 

training parameters were set up as shown in Table I. However, 

there are no standard rules in determining the parameter 

values. This still makes deep learning methods inefficient 

since it has to experiment with various parameter values for 

one case. Sometimes one researcher differs from another in 

determining parameter values according to their respective 

considerations, even though it is not uncommon for 
researchers to explain such considerations. Likewise, the 

same parameter values do not always lead to the same result 

for several implementations with different kinds of a dataset. 

TABLE I 
PARAMETER CONFIGURATION 

Algorithm Backbone Input size 
Batch 

size 

Total 

steps 

Faster R-
CNN 

InceptionV2, 
ResNet50 

Min: 600 
Max: 1,024 

1 10,000 

SSD 
InceptionV2, 
MobileNetV2 

300 × 300 16 10,000 

YOLOv3 Darknet53 416 × 416 6 ~10,000 

 

Faster R-CNN used an input size of 600 pixels for the 

shorter edge, while the larger edge is resized based on the 

scale [27]. For example, if the original image size is 800 × 

1,000 pixels, the input for Faster R-CNN becomes 600 × 750 

pixels. In this study, the minimum input dimension was 600 

pixels, while the maximum was 1,024 pixels since the original 

image was too large. This means that each image will be 

resized so that the shorter edge is 600 pixels, as used by Ren 

et al. [27]. Meanwhile, if the larger edge exceeds 1,024, then 

the image will be resized so that the maximum size is 1,024. 
For instance, if the image size is 2,592 × 1,944 pixels, the 

input size for Faster R-CNN will become 1,024 × 768 pixels. 

Input size for SSD in this study was the same as that used 

by Liu et al. [28], 300 x 300. In Liu et al. [28], the experiment 

of SSD was done using 300 x 300 and 500 x 500 input sizes. 

The larger input size, as usual, resulted in better accuracy 

because more information can be extracted from the image, 

despite leading to longer running time. However, this study 

used 300 × 300 pixels image size for faster running time 

regarding the model implementation on a limited computing 

device, namely Raspberry Pi. Moreover, YOLOv3 used an 
input size of 416 × 416 pixels as already used in [29]. 

Minibatch stochastic methods or simply minibatch 

methods are optimization algorithms that use training set 

samples to estimate the gradient [30]. In the object detection 

learning process, batch size, which commonly refers to the 

minibatch size, can be specified from one onwards. Usually, 

the selected batch size is more than one but less than the entire 

training data. Mostly it is the closest to the power of 2, such 

as 8, 16, 32, 64. Different batch sizes usually take effect on 

training time. A larger batch size commonly leads to the 

longer time needed for the training process to converge. 

However, it allows maintaining stability when the 
convergence has been reached because of a more accurate 

gradient estimate. 

On the contrary, a small batch size generally speeds up the 

learning process but with a volatile convergence curve of 
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training loss or accuracy because of high variance in the 

gradient estimation. Small learning rate might be required for 

the training process with a small batch size to keep the 

learning process stable [30], [31]. For the experiment, Faster 

R-CNN used minibatch size ' = 1 taking into account that 

the training process employed 1 GPU. Moreover, SSD and 

YOLOv3 models were trained using minibatch sizes 16 and 6, 

respectively. 

The stop condition used for training the models was set up 

into 10,000 steps. The training loss usually showed no 
significant changes during the experiment after the 7,000th 

step. Thus, the number of 10,000 steps was considered to be 

enough for the stop condition threshold. 

D. Model Evaluation 

In general, object detection models were evaluated by 

calculating the precision and recall. In object detection, 

precision and recall are two important model evaluation 

metrics used to measure how well a detected object matches 
a reference object. Precision can be defined as a proportion 

between correctly detected positive classes among all 

detected positive classes, while recall refers to the proportion 

of correctly detected objects among all objects that should be 

detected [32]. Precision and recall are calculated using 

Equations 3 and 4 based on Table 2  [14]. 

TABLE II 
CONFUSION MATRIX 

 Actual positive Actual negative 

Predicted positive 
True positive 

(TP) 

False-positive 

(FP) 

Predicted negative 
False-negative 

(FN) 

True negative 

(TN) 

 


������� = TP
TP + FP (3) 

����� = TP
TP + FN 

(4) 

Average precision (AP) is used as a metric to measure the 

performance of the object detection model for a given class. 

An AP score is defined based on the mean of the precision 
scores of a set of equidistant recall values (0, 0.1, 0.2, ..., 1) 

[14]. AP score is calculated with Equations 5 and 6 [14]. 

-. = 1
11 / .0123�4()

�∈{8,8.#,8.$,...,#}
 (5) 

Pinterp(r) or interpolated precision is defined as 

.0123�4 = .(̃)�̃:�̃=�>?@  (6) 

where P(̃) is the precision measured at recall (̃). 

To evaluate multi-class detection, mean average precision 

(mAP) is used as the average value of all AP values [14]. In 

this study, the calculation of mAP was processed using GPU. 

E. Implementation on Raspberry Pi 

Object detection task was carried out on Raspberry Pi to 

analyze the capability of such device in running object 

detection algorithms. At this implementation, the 

computation time of the algorithms when performing 

detection inference was measured, hereinafter referred to as 

inference time. The inference phase means a phase when an 

object detector infers relevant bounding boxes and class labels 

of objects detected in an image. Furthermore, here resources 

usage was also measured. Memory consumption and CPU 

(Central Processing Unit) time are important parameters to 

measure how many resources a program or task uses. Thus, 

this study involves those two aspects to analyze the algorithm 

performance on resources usage. 

For efficiency purposes, instead of using the entire test set, 

the detection process on Raspberry Pi was conducted using 10 
images randomly selected from the test data. The computation 

time was measured each time the detector performed 

inference for each image. After that, an average computation 

time was calculated from the obtained inference time data. 

Moreover, the detection process of one test image was carried 

out to measure the resources usage of each detector. 

Parameters measured included CPU (Central Processing Unit) 

time and RSS (Resident Set Size). The resources usage was 

monitored and recorded while the detector program was 

running. 

III. RESULTS AND DISCUSSION 

Mean average precision (mAP) is an evaluation metric for 

the object detection task. The mAP score is obtained from 

averaging the AP scores of all classes. This study used an IOU 

threshold 0.6 for non-max suppression (NMS) process to 

calculate the mAP score. Based on Table 3 Faster R-CNN has 

the highest mAP compared with the other methods, while the 

lowest mAP belongs to YOLOv3. Faster R-CNN with 

ResNet50 as the feature extractor is the most accurate model 
for detecting melon leaves and their class labels with a mAP 

of 48.85%. This indicates that the two-stage models can 

obtain more accurate detection results than the one-stage 

models. As shown in Fig. 1, the two-stage methods gain up to 

two times higher mAP than the one-stage methods. For the 

one-stage, SSD with MobileNetV2 achieves higher mAP than 

that with InceptionV2 by the difference of ~ 6%. 

MobileNetV2 is probably better than InceptionV2 in feature 

extraction. The inverted Residual Block proposed by Sandler 

et al. [33] may enrich the features extracted from such a 

complex image. 

TABLE III 

AP AND MAP VALUES OF EACH METHOD 

Method Backbone 
APnormal 

(%) 

APabnormal 

(%) 
mAP (%) 

Faster R-
CNN 

InceptionV2 47.26 50.2 48.73 
ResNet50 45.83 51.86 48.85 

SSD 
InceptionV2 23.83 30.25 27.04 

MobileNetV2 30.52 35.81 33.16 

YOLOv3 Darknet53 15.26 17.85 16.56 

 

Distinguishing whether a leaf is abnormal or normal from 

many leaves and locating its position among them is a fairly 
complex problem. It is necessary to define the leaf object 

distinguish its class and determine which location must be 

detected. The background may look similar to the positive 

objects because there are leaf objects in the background and 

foreground in the image of a group of leaves. As in the data 

annotation process, not all leaves were labeled. In addition, a 

pile of leaves increases the density of the detection objects. 
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With such data characteristics, two-stage detectors that are 

powerful in the aspect of extracted features richness can result 

in better accuracy than one-stage detectors. 

Meanwhile, YOLOv3 has the smallest mAP (16.56%) 

compared to the other methods. This score is two times 

smaller than SSD MobileNetV2. For cases that require high 

accuracy, such as leaf abnormality detection, YOLOv3 model 

is not recommended because it will result in more detection 

errors. It seems that YOLOv3 is not very good at extracting 

information (features) from complex and dense data such as 

leaves. This could be because the prior boxes at each scale 
perform poorly when retrieving information. Unlike SSD, 

which used six default boxes in each feature map layer, 

YOLOv3 used fewer (three) prior boxes at each scale to detect 

objects so it could not dig up more information. The 

background looks similar to positive objects in leaf data, 

which makes it complex, especially for one-stage detectors. 

In addition, YOLOv3 performs poorly with NMS operation 

on dense object areas, leading to a higher error rate when 

detecting dense objects [34]. YOLOv3 produced multiple 

detections on the same object in this experiment, as seen in 

the detection results. In Nguyen et al. [35], YOLOv3 
experienced a dramatic decrease in mAP when IOU was 

increased from 0.5 to 0.75 because YOLOv3 did not perform 

well during localization. 

 

 
Fig. 1  Comparison of mAP values 

 

Although the two-stage method outperforms the one-stage 

method in terms of accuracy, the two-stage method is mostly 

poor in terms of computation time. It can be seen that the 

computation time required by the two-stage method (Faster 

R-CNN) to perform detection is longer than the one-stage 

methods (SSD and YOLOv3). The two-stage method 

performs the proposal region stage and classification and 
regression separately, thus increasing the computation time. 

At each stage, the two-stage method performs classification, 

the first is to determine the object's existence, and the second 

is to assign the class label. Table 4 shows the computation 

time comparison for each method with Faster R-CNN 

ResNet50 as a benchmark. 

For the one-stage method, YOLOv3 has the fastest 

computation time with a computation speed of 0.5 seconds, 

up to five times faster than the other methods (Faster R-CNN 

and SSD MobileNetV2) shown in Table 8. Although 

YOLOv3 is the fastest, the mAP value of it is still very small 

(below 20%). Thus, the YOLOv3 method is not 
recommended for detecting leaf abnormality of melon plants. 

SSD with InceptionV2 takes 1.2 times faster inference than 

MobileNetV2 but has ~6% smaller mAP. Because in case of 

abnormality detection, accuracy is more important, it can be 

said that SSD MobileNetV2 is better than SSD InceptionV2 

because of higher mAP but with considerable computation 

time for implementation on limited computing devices like 

Raspberry Pi. 

Faster R-CNN requires the longest computation time. 

Compared to YOLOv3, Faster R-CNN performs inference 

five times longer but has mAP value up to three times higher. 

Each algorithm is stronger in one aspect and weaker in 
another. However, in this study, accuracy takes precedence 

over computation time. Faster R-CNN ResNet50 has the 

highest mAP value with a slightly longer computation time 

than SSD MobileNetV2 SSD, about 1.2 times longer. Faster 

R-CNN with ResNet50 and InceptionV2 has nearly the same 

performance with mAP of ~49% and inference time of ~2.5 

seconds, but the Faster's smaller scale is considered R-CNN 

ResNet50 is better because it takes 84 milliseconds faster. In 

this case, it seems that the residual block of the ResNet50 

network has a role in raising the accuracy [36]. 

TABLE IV 
INFERENCE TIME OF EACH METHOD 

Method Backbone 
Inference time 

(s) per image 
Speed up 

Faster R-CNN 
InceptionV2 2.591 1× 
ResNet50 2.507 1× 

SSD 
InceptionV2 1.716 1.5× 

MobileNetV2 2.07 1.2× 

YOLOv3 Darknet53 0.522 4.8× 

 

 

Fig. 2  Inference time comparison 

 
In this case, it can be seen that Faster R-CNN is applicable 

to limited computing devices such as Raspberry Pi because it 

has the highest level of accuracy with considerable 

computation time. However, SSD is preferable for real-time 

detection such as on video because it ran faster than Faster R-

CNN yet had considerable accuracy. 

Fig. 3 shows a scatter plot of mAP against computation 

time of the object detection algorithms. Fig. 3 indicates that 

computation time is directly proportional to mAP; the higher 

the mAP value, the longer the computation time required. 

Faster R-CNN ResNet50 is the model with the best mAP, 
which is slightly faster than the Faster R-CNN InceptionV2. 

Faster R-CNN ResNet50 is highly recommended for cases 

like melon leaf abnormality detection if data transmission and 

processing, for example, a surveillance robot, is carried out in 
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no less than five minutes. This does not matter because signs 

or symptoms of abnormalities in plant leaves can still be 

detected, even if not in seconds. However, the SSD method is 

recommended if faster processing is desired, such as for a 

real-time video. 

In summary, for cases that require high accuracy, the two-

stage Faster R-CNN method can be the best alternative with 

considerable computation time for implementation on a 

limited computing device such as Raspberry Pi. As for real-

time detection needs such as video, SSD can be the best 

alternative to use. 
Fig. 4 shows the amount of memory (RAM) used by each 

object detection program when it was run. The x-axis 

represents the time during which the program was running, 

every second, starting from the time the program was 

executed until it produced object detection output. Meanwhile, 

the y-axis shows the number of RSS (MiB) allocated to run 

each detection program. RSS represents non-swap memory or 

RAM used by the task [37]. In general, in the early seconds, 

the memory usage is more dominant, indicated by the more 

volatile movement of RSS graphic than CPU usage, which 

tends to be stable. At this early stage, the program usually 
loads modules or packages and loads the object detection 

model. The process of loading packages and the model is less 

burdensome on CPU because there are no commands for 

complex computation operations. Thus, the complexity here 

is focused on memory. 

 

 
Fig. 3  Scatter plot of inference time against mAP 

 
Fig. 4  Memory usage of each method 

 

The largest memory usage is owned by Faster R-CNN 

ResNet50 where the maximum usage of RSS reaches 981 

MiB. This is reasonable because Faster R-CNN is a two-stage 

model with a complex architecture (namely two stages: 

proposal region and classification) so that it affects more 

memory usage, coupled with ResNet50 as a backbone that has 

a deeper network than InceptionV2 [14]. In addition, the 

Faster R-CNN ResNet50 detection process requires more 

memory, as seen in Figure 2, which shows the movement of 

RSS graphics in the final seconds is higher.  

The smallest memory usage belongs to YOLOv3 and SSD 

MobileNetV2, with a maximum memory usage of 502 MiB 

and 551 MiB, respectively. YOLOv3 being lighter could be 
because the design structure of the program algorithm is more 

efficient than Faster R-CNN and SSDs that use Object 

Detection API. As seen in Fig. 4, the movement of YOLOv3 

RSS significantly increases after the 25th second, which is 

likely when the program is doing the detection process, in 

contrast to SSD and Faster R-CNN graphics which have 

similar RSS fluctuation patterns in the initial seconds (before 

the 25th or 30th second). In addition, it may be due to the 

efficient YOLOv3 model as a one-stage model even though 

from the backbone aspect, the size of Darknet53 is even larger 

than ResNet50 [38]. Moreover, the lighter SSD MobileNetV2 
is possible because of the efficient SSD model as a one-stage 

object detector and the MobileNetV2 architecture with mobile 

architecture designed for devices with low computing 

capabilities [33]. 

Fig. 5 shows the percentage of CPU usage by object 

detection programs when run. Percentage of CPU usage 

means the percentage of CPU time used by the task [37]. In 

general, after the 25th second, the memory usage starts to 

decline, followed by the movement of the CPU percentage 

graph towards the peak. This indicates that the detection 

process is running. On Raspberry Pi, the image processing is 
conducted on the CPU, so various mathematical calculations 

are carried out by deep learning that is burdening the CPU. 
 

 
Fig. 5  CPU time of each method 

 

Two-stage detection approach and a deep network 

backbone make Faster R-CNN ResNet50 have the highest 

CPU time with CPU usage percentage of 99% (Table 5). SSD 

MobileNetV2 is the algorithm that consumes the least CPU 
resources with a percentage of 48.5%. On the other hand, 

although YOLOv3 consumes the least memory resource, it 

has a maximum CPU time of 85%, which is greater than the 

SSD-based methods have. Thus, it can be concluded that from 

the aspect of resource usage, SSD MobileNetV2 is the best 
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method to be implemented on limited computing devices such 

as Raspberry Pi. Apart from having sufficient mAP, SSD 

MobileNetV2 uses resources more efficiently than the other 

models. 

TABLE V 
MAXIMUM USAGE OF CPU AND RSS 

Method Backbone CPU time (%) 
RSS 

(MiB) 

Faster R-CNN InceptionV2 97.25 659 
 ResNet50 99 981 

SSD InceptionV2 60 659 
 MobileNetV2 48.5 551 

YOLOv3 Darknet53 85 502 

 

Fig. 6(a) shows a test image with ground truth boxes, while 

Fig. 6(b)-(f) shows the image with predicted boxes of each 

method. The detection was done using IOU threshold of 0.6 

for NMS operation. Many multiple boxes are assigned to the 

same objects in YOLOv3 prediction. In case the overlapping 

boxes are too many, it indicates that the model poorly 

performs the detection. However, the number of bounding 

boxes can be reduced by decreasing IOU threshold for NMS 
operation. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6 Image with (a) ground truth boxes, detection results of (b) Faster R-

CNN InceptionV2, (c) Faster R-CNN ResNet50, and (d) SSD InceptionV2 

IV. CONCLUSIONS 

The results showed that the mean average precision (mAP) 

value is directly proportional to the running time. That is, the 

algorithm with higher mAP would require a longer running 

time. Faster R-CNN had the highest mAP (~49 %) that ran 

~2.5 seconds for an image, yet with the highest resources 

usage. Considering the accuracy, Faster R-CNN can be 

recommended as the best object detection algorithm in case 

accuracy is more important than time complexity, including 

melon leaf abnormality. However, for real-time detection 

such as on video, SSD can be considered a fast algorithm with 

considerable accuracy that can be implemented on limited 
computing devices such as Raspberry Pi. Although YOLOv3 

had significantly better running time (0.5 s) which made 

YOLOv3 the fastest algorithm discussed here, it had too low 

mAP below 20%. Therefore, in this case, YOLOv3 is not 

recommended for melon leaf abnormality detection since it 

would lead to more detection errors. 

However, future research can concentrate on the detection 

of more specific types of leaf abnormality in the melon plant. 

The data annotation process can involve experts to minimize 

errors when assigning bounding boxes and class labels. In 

addition, for a better experiment, various training techniques 

can be applied by increasing the number of datasets, changing 

the input size, trying more data augmentation techniques, or 

using different backbones. Adjusting the model networks can 

also be a good alternative for better accuracy and running time. 
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