
Vol.11 (2021) No. 4

ISSN: 2088-5334

RSA Over-Encryption Employing RGB Channels through a
Steganography Variant

Ismael Martíneza,*, Walter Fuertesa, Melany Palaciosa, David Escuderoa, Tatiana Noboaa
a Computer Science Department, Universidad de las Fuerzas Armadas ESPE, 17-15-231B, Sangolquí, Ecuador

Corresponding author: *iamartinez1@espe.edu.ec

Abstract— This study aims to provide a solution for RSA over-encryption based on steganography variant to hide sensitive information

that requires security. The current study describes a software program's implementation phases that allow technicians to re-encrypt a

message, first encoded using RSA cryptosystems as an extra security layer. Subsequently, this text was converted into an array of bytes

stored in Red, Green, and Blue (RGB) layers of one or more generated images, which will finally be sent to the receiver. The

programming recursion technique was used to determine the number of images that need to be sent and the bytes corresponding to

each of them. These images were created, reorganized, and encrypted according to pre-defined rules. The security of the proposed

method relies heavily on the probability theory. Each of the possible patterns that can store data is equally likely to be chosen by an

attacker. The program also uses as a conceptual base the Least Significant Bit Substitution (LSB) technique, with the difference that it

directly stores bytes for the RGB values of the generated image(s). Our results indicate that the re-encryption is independent of a carrier

image. The number of different ways to organize the pixels and the generated images suggests an acceptable security level. Moreover,

it requires a not negligible computational power to decipher the pixels' original order and the channels containing relevant information.

Keywords— RSA; RGB; over-encryption; steganography; decryption.

Manuscript received 16 Nov. 2020; revised 12 Jan. 2021; accepted 15 Feb. 2021. Date of publication 31 Aug. 2021.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The current study's main aim has been to provide a novel
method that allows a transmitter to conduct a coded message.
The intention of the given message remains hidden and
remains only understandable for its recipient. To carry out, we
implemented an algorithm to hide information on a set of
generated images by firstly encrypting text with a variant of
the already known RSA algorithm. Later, we may use the
encrypted text's obtained data to create one or several images
whose pixels contain pieces of data that may be reorganized
in any desired order and subsequently sent to the receiver.
More specifically, after applying the baseline RSA algorithm
[1] to a message on the network, this resulting string will be
stored in one or several images depending on the length of the
message.

There has been some research considering the over-
encryption and data hiding in digital images. Recent studies
of Liu and Zhang [2] aimed to provide an improved version
of the Least Significant Bit (LSB) algorithm to hide
information. They combined the steganography and QR code
(abbreviated from Quick Response, QR) to hide an encrypted

image by storing the last most significant bits in the carrier
image is different red, green, and blue (RGB) channels. The
study proposed by Mukherjee et al.[3] encrypts an image
using a variant of the RSA algorithm, separating the image
into several files. Nath [4] developed multiple encryption
methods based on Steganography using an encrypted secret
message. Khan [5] proposes a steganographic method based
on a grey-level modification for authentic color images using
image transposition, secret key, and cryptography. Sultan
\and Al-Shaaby [6] conducted a comparative study of
steganography and cryptography. They surveyed some
methods combining cryptography and steganography
techniques in one system. Somyia et al. [7] proposed a new
data hiding approach, which utilizes some AES data
encryption concepts while hiding the data using hex symbols
steganography. For all of those mentioned above, the joining
of cryptography and steganography helps reach a near-perfect
communication system, presenting higher reliability than
stand-alone cryptographic methods. The joining of RSA and
steganography builds a robust way to encrypt capable of
multiple front types of attacks, detection, and reverse
engineering.

1432

Another use case of steganography showcased by Gutub
and Alaseri [8] demonstrates this technique's usage within
Arabic text, taking as a foundation a single character to hide
computer-generated passwords within user-selected
passwords. Several prior proposals combine traditional
steganography to hide information within multimedia files
with cryptography techniques [9]–[15] to encrypt the
information or encrypt the whole stage-medium carrying data.
Studies using asymmetric cryptosystems such as RSA and
steganography [16]–[18] had been proposed in the past.
Nevertheless, the proposed methods use the LSB technique to
hide data, making them dependent on a carrier file.

All these efforts have provided various solutions, which
also shows the interest of the scientific community. However,
the vulnerability of some versions of the encryption
algorithms persists. Thus, we explore a new way of storing
data and taking advantage of the RGB channels available for
each pixel on an image, focusing on strengthening the
encrypted text.

 The current study describes the implementation phases of
a procedure that allows us to convert an encrypted text into a
series of generated images sent to a receiver within this
context. Recursion has been used to determine the number of
images sent and the bytes that correspond to each image.
Computers generate these images, and their pixels may be
reorganized and encrypted according to a set of pre-defined
rules. Through this work, a new alternative is proposed to
store information in the RGB channels of an image generated
from a message, keeping the location secret and channels
containing relevant information when decrypting the resulting
image.

The main contribution is the proposal of an algorithm that
allows us to transform a message into a set of images,
performing as a variant of the already known steganography
technique. The proposed algorithm does not depend on any
carrier, as usually, typical steganography does. This algorithm
generates its own set of images whose RGB layers (i.e., the
primary colors in additive color synthesis) contain pieces of
data and are organized using pre-defined rules.

The finished results demonstrate that the over-encryption
remains independent of a carrier image. Furthermore, the
number of different organizing pixels and generated images
allows the proposed encryption method to appear very secure.
In attempting to decrypt the message without the knowledge
of the mentioned process, it may require an enormous and
unrelated amount of computational power to uncover the
original order of the pixels and the channels that contain
relevant information. Equally important, during the
development of this research, we verified that the size and
weight of the created images have been considerably smaller
than those of the images used in stenography.

The rest of this paper is structured as follows: Section 2
presents Materials and Methods that explain all the
procedures used to conduct this research and the undertaken
methods. Section 3 provides the evaluation of results, the
complexity analysis of algorithms, and the Discussion of
findings. Finally, Section 4 presents the conclusions as well
as future work lines.

II. MATERIAL AND METHOD

A. Requirements Specification

According to the IEEE Software Requirements
specification [19] is the arrangement for a particular software
product, program, or set of applications that perform certain
functions in a specific environment, intending to provide an
adequate solution. Within the context of the current study, the
following scenarios have conceived:

The security of the RSA algorithm depends on the classical
difficulty of factoring large integers [3]. Furthermore, the
security is affected by the decomposition into prime factors,
which for more reliable security requires a greater length of
the key, implying an increase in computational costs [20].
Additionally, when small values are selected for the key, the
encryption process remains weak, and the security decreases,
causing easier decryption of the message [21].

As stated in Alia et al. [22], "steganography is defined as
the art of hiding secret data in a non-secret digital carrier
called cover media". Cryptography focuses on keeping the
contents of a message secret, while steganography focuses on
keeping the existence of that message secret. Cryptography
encrypts a message, but steganography hides it. However, as
stated in Ahmad [23], the proposed steganography solutions
so far have a limitation on the embedding capacity for colored
images without affecting the images' quality.

For the reasons mentioned above, a variant of the basic
steganography has been adopted in this study. Thus, it has
been considered that to perform encryption to become more
challenging to infringe, the RSA encryption algorithm needs
to be applied, which is based on selecting two large prime
numbers chosen at random and kept secret. This algorithm's
main advantage of security rests in the difficulty when
factoring in large numbers [20]. In this case, it is used to
encrypt a message that will then be sent through an encoded
image.

B. Model Design

Fig. 1 Schematic illustration of the experimental model which has been tested
in a controlled virtual network environment

We have tried to improve the process of over-encrypting a

message [24] to send it over the Web, by encrypting the RSA
algorithm's result, using a variant of steganography (i.e., over-
encryption). The procedure is as follows (see Fig.1). At (1), a
transmitter chooses to use this method to hide data. At (2), the
transmitter will proceed to write a message that will be known
as the original message. At (3), this chain will be introduced
to an encryption process using the RSA algorithm that has
already been described. At (4), subsequently, as a result, we

1433

will obtain an encrypted chain. At (5), once we have this
output, it will be decomposed into bytes, storing them into an
array. Then at (6), to create the images, this first array needs
to be separated into various arrays, containing a maximum of
255 bytes. Once the hiding method has been completed,
images with the maximum number of bytes containing
relevant data hidden on specific channels, layers, and
sequences will be obtained. At (7), while these images arrive
at the other computer, the process of retrieving the
information begins. The bytes of data hidden on the image
must be retrieved and saved on an array. Therefore, the
algorithm will continue to add data extracted from each image
to this particular array. Later at (8), the end of the process will
result in a group of bytes representing an encrypted chain. At
(9), this chain is rebuilt and decrypted using the RSA
algorithm. At (10), the original message is presented to the
receiver, as shown at (11).

C. Model Explanation

The model for the proposed data hiding method in images
is described below. It will hide encrypted text bytes inside 24
bits of colors automatically generated images using the
encrypted text’s bytes using RSA. The image that contains the
hidden data will be saved as a BMP format with no data loss
caused by the compression other formats offer. We refer to
byte or bytes for eight bits representing the encrypted message
in decimal notation, in which the obtained values range from
0 to 255.

1) Data Hiding: When it comes to data hiding, the process
begins retrieving all the bytes from the encrypted text, as these
values are integer numbers higher than zero. As previously
mentioned, we will use them as pure colors for each channel
of the generated image using data from the encrypted text. As
the proposed method hides only one byte of the encrypted
message per channel on each pixel, Table 1 (a) indicates all
possible data hiding options. However, this table contains
some useless possibilities for the proposed method as it
indicates combinations that use only one or none channels to
store data.

Table 1 (b) may report all the combinations that are useful
for the method mentioned above. Disclaimer: 1s and 0s only
represent locations where relevant data will be hidden. A brief
description of the procedure is given below:

TABLE I
(A) BLENDS IN THE RGB LAYERS. (B) USEFUL COMBINATIONS FOR THE

METHOD

 (a) (b)

R G B R G B

0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 1 1 0
0 1 1 1 1 1
1 0 0
1 0 1
1 1 0
1 1 1

2) Establishing the Dimensions of the Generated Images:

The number of pixels that compounds the generated images
will depend on the number of bytes retrieved from the

encrypted message. The resulting number will subsequently
be divided by two, as the proposed method uses two channels
per pixel to store relevant data. However, it is implausible to
receive an image with fractions of pixels; this means that if
the value obtained from the last division is a fractional number,
it needs to be approximated to the closest superior integer. In
this way, we prevent running out of pixels to store data. Once
the number of pixels has been determined, we must obtain its
square root, as the proposed method creates square images
with equal width and height. As previously mentioned, if the
number obtained is fractional, it needs to be approximated to
the closest superior integer.

3) Storing the Real Quantity of Data being Hidden on the
Image: In most cases, our method requires approximations to
create images with the same width and height, causing an
alteration of the real number of data is being hidden.
Therefore, there must be one pixel and channel containing the
real number of bytes stored on the image pixels in the
resulting images. This pixel demands to be the first one to be
located before the retrieving of data starts. Due to the images
of 8-bit color depth, the proposed method creates x number of
images, of which each one contains a maximum of 255 bytes
of relevant data.

4) Storing the Bytes Retrieved from the Encrypted
Message: For the sake of simplicity, the way the bytes are
hidden appears in the following form. The algorithm will start
at the first row and column of the image, as it is treated as a
two-dimensional matrix. According to the established rules,
the algorithm will choose the pixel channels that are being
treated to save the data. After such a process is completed for
every image generated by the algorithm, each image's pixels
and channels may be shuffled independently of the other
images using other algorithms, as documented in this study's
related works.

5) Sending Images: Once the hiding process is complete,
the images need to be sent and stored in the order in which
they were originally created. The algorithm implements one
function that stores them in the mentioned order, as it is called
each time the hiding process for each image has ended (see
pseudocode 1).

Algorithm 1 Pseudocode: Sending Images

1: procedure STORE THE IMAGE
2: Begin:
3: For each image received
4: If the image needs to be encrypted;
5: A new File is added;
6: Message, the String terminal and the encrypted text is

added;
7: If the image needs to be decrypted;
8: A new File is added;
9: Message, the String terminal and the decrypted text is

added;
10: The mistakes are verified;
11: End.

6) Data Retrieving: When a batch of images is received,
retrieving data will start automatically. If the pixels and
channels have been shuffled on the hiding process, they need
to be returned to the original position. This action needs to be
done so that the message that has been hidden is retrieved
unaltered. The first step that needs to be completed for the

1434

algorithm to continue retrieving data is locating the pixel that
contains the real number of data that has been hidden in the
image. The following steps are simple: the algorithm will start
again from the first column and row of the image, passing
over each pixel, the algorithm will check its position. For
example, suppose the row and column are odd numbers. In
that case, it will retrieve relevant data from specific channels
in the order there were saved, ensuring that the message is not
modified in any way, according to the specified rules. The
bytes retrieved from one image need to be stored to keep
adding other bytes that will be retrieved from the other images.
When all the bytes have been extracted from each image, it is
necessary to build a string using them. Next, the resulting
string needs to be decrypted using the RSA algorithm to
determine the message's real content.

D. Security Level of the Algorithm Based on the Theory of
Probability

The security of this algorithm is concentrated in two steps.
Firstly, in the number of possible ways in which pixels may
be ordered in an image and secondly in all imaginable forms
of ordering the bytes in each pixel’s three-color layers. An
example of such a procedure may serve the following case:
we may take a picture of five by five pixels long and wide,
which results in a total of twenty-five pixels. Understanding
the importance of the order of the pixels in an image becomes
more explicit when swapping the twenty-five pixels will
result in 1.551121004 1025 different ways in which pixels
may be sorted, i.e., different images. Furthermore, this value
needs to be multiplied by three, as it represents the number of
possible ways in which information may be saved on each
pixel when using two layers to store data.

In general terms, it is possible to calculate the number of
images that can be created using Equation (1). Where, nP is
the number of pixels, and N is the number of images created.

 � = 3 ∗ (��!) (1)

It is also possible to determine the image's security if it is
known that each permutation is equally likely to be chosen by
an attacker, based on the probability theory [25]. Therefore, a
probability formula may be determined in which the attacker
can guess the correct order of the pixels, as indicated by the
equation (2).

 P = �
�∗(��!)�

 (2)

E. Algorithm to Encrypt a Message using RGB in an Image

The algorithm designed uses as information the bytes
obtained from a message, which RSA has previously
encrypted. As these values will be positive integers, they will
be saved in an image using the RGB format’s color layers. In
each pixel of the image, it will be possible to save three bytes
of the encrypted message (see pseudocode 2).

Algorithm 2 Pseudocode: Multiple-Encryption algorithm

1: procedure MULTIPLE-ENCRYPTION
2: Begin:
3: Encrypt the message using RSA;
4: Store in an array the bytes obtained from the encrypted

message;

5: Do

6: Separate the resulting array into two different arrays

7: Add the first one to an ordered list
8: While bytes great than 255 do

9: For each byte in the list
10: a. Calculates dimensions of the image;
11: b. Creates the image;
12: c. for each pixel of the created image save information

on each channel;
13: d. Save the image in a list
14: Add the first one to an ordered list
15: End

F. The dimension of the Image Created by the algorithm

The number of pixels that the image will contain will be
defined by the number of bytes obtained from the encrypted
message divided by two. However, it is improbable to have
pixel fractions in an image. Therefore, the previously reached
value must be approximated to the nearest higher integer to
obtain a decimal value, or it may risk the loss of data due to
the lack of storage space. However, the image dimensions are
defined as the square root of the number of pixels that will
have the image, since the aim has been the creation of square
images. Again, if decimal values are obtained, it will
approximate them to the nearest integer value.

Disclaimer: It is fundamental to consider when the
algorithm complexity has been based on the number of entries.
Note that the original message has been placed in a matrix
with an almost equal number of processed entries. Only a few
augmented values reach their size to be linearly proportional
to the original and not affected by the usage of two nested
loops, suggesting a quadratic augmentation of the size.

At this point, it might be implied that to obtain the original
number of data containing the image, one would raise the
wide and high to the square and multiply it by two. However,
when obtaining the image's dimensions, it loses the exact
number of data that may have been there in some cases.
Therefore, it is considered to reserve a color layer of a specific
pixel to store the real value of the number of data contained
in the image, allowing a more straightforward decryption
process.

G. Information by Color Layer

Hiding information in images through the RGB color
layers has been used in several works related to
steganography. Liu and Zhang [2], like Abbas et al [26] used
this concept in their studies through the LSB method. The
proposed algorithm uses the basis of this concept, differing in
that it stores bytes directly for the RGB values of the created
image(s). When storing the bytes in each color layer, utmost
care needs to be considered. Observing that the values of the
bytes are saved from the allowed range for the colors, means
that the value needs to be between 0 and 255 since it is
established that a layer must be reserved of a specific pixel to
store the amount of data that will contain the image (critical
data for encryption). If this number exceeds the limit, it will
create the number of images needed to store the entire
message.

This process is performed using recursion to separate the
original array of bytes into n fixes with a maximum of 255
data to create n images later on. In this way, if, after
encrypting the message, it is found that the information byte,

1435

for example, is 525, it is needed to create three images, of
which two of them will contain 255 data and the third some
15. The images created to hide the message are stored in an
ordered list sent to the receiver.

H. Decryption Process

The decryption process follows the defined rules in the
encryption algorithm and related to those used to identify how
the pixel and RGB layer of the image relay useful information.
The decryption algorithm represents exactly the inverse
process, where the received list of images is considered. As
mentioned above, the rules are applied image by image to
obtain the byte array stored in them and, later, decrypt using
the algorithm of the decryption RSA baseline. The decryption
algorithm, represented in pseudocode 3, is described below.

Algorithm 3 Pseudocode: Decryption algorithm

1: procedure OVER-DECRYPTION
2: Begin:
3: For each image received
4: a. For each pixel of the image;
5: a.1. Obtain the values of Red, Green and Blue;
6: a.1.1 Retrieve information from each channel
7: a.2. Save the recovered information in an array;
8: b. Store the array created in a list;
9: Join all the arrays of the list mentioned above into one;
10: Create a string using the bytes of the previously created

array;
11: Decrypt the string using RSA baseline;
12: End

I. Experimental Topology and Proof of Concept

As a test topology, a connection between two computers
has been established in two different geographical locations:
Valle de Los Chillos and Quito, both situated in the Inter-
Andean Valley of Ecuador. For research purposes, a
controlled Virtual Network Environment (VNE) has been
used. According to Fuertes et al. [27], a VNE can be defined
as “a set of virtual equipment connected collectively in a
given topology, which emulates an equivalent LAN/WAN in
which the environment is perceived as if it were real”. The
sending and receiving of messages of different lengths have
been tested, verifying that the data lacked loss and that the
decrypted message identical to the original.

When sending the message, the text is encrypted with RSA,
and later hidden in n images containing the bytes. If an entity
is trying to find the messages’ content, it will find a group of
images travelling on the Web. The bytes of relevant
information of each image needs to be recovered when
receiving the group of images. Finally, it may build a message
out of them that will be decrypted using RSA by displaying
the original text on the receiver screen, as shown in Fig. 2.

Fig. 2 Encryption and Decryption Process

III. RESULTS AND DISCUSSION

The following examples are obtained after implementing a
simple JAVA application, which allows an individual to write
a phrase and subsequently encrypt it. An overview of the RSA
encryption process result is also detailed, as it is fundamental
to understand how the algorithm works. The string of
characters is the input for the encryption algorithm. It is lately
encrypted and hidden in the images created by the algorithm
which outputs a batch of images sent through the internet. It
also illustrates the image or images resulting from the
encryption process so that the difference between standard
steganography and this variant becomes visible.

A. Example with a Single Resulting Image

When entering the next string of characters: This is a

hidden message sent through an image, the following RSA
encryption obtained is:
4958 3768 790 102 4584 790 102 4584 2467 4584 3768 790
3350 3350 1881 3869 4584 6069 1881 102 102 2467 4229
1881 4584 102 1881 3869 4958 4584 4958 3768 6317 3432
3210 4229 3768 4584 2467 3869 4584 790 6069 2467 4229
1881

The above message encrypted in RSA is converted to a
byte array with a length of 221. This length is divided by two,
which is approximated to the nearest superior integer, in this
example, 110. From the square root of that number, one
obtains the image dimensions, which are 11 high by 11 high
and wide. Once the image is created through measurement,
the rules are applied to locate the bytes in the different RGB
channels. The process mentioned above, and all steps are
illustrated in Figure 3.

Fig. 3 Image generated with the algorithm

1436

B. Example with Several Resulting Images

In order to visualize the results in longer messages, the
following text has been considered: The present work seeks
to protect sensitive information through the use of the RSA
encryption technique and a variant of the steganography
technique. The following RSA encryption is obtained:

4966 6724 3768 1881 4584 2677 6317 1881 102 1881 3869
4958 4584 3146 3432 6317 1404 4584 102 1881 1881 1404
102 4584 4958 3432 4584 2677 6317 3432 4958 1881 1851
4958 4584 102 1881 3869 102 790 4958 790 1745 1881 4584
790 3869 2117 3432 6317 6069 2467 4958 790 3432 3869
4584 4958 3768 6317 3432 3210 4229 3768 4584 4958 3768
1881 4584 3210 102 1881 4584 3432 2117 4584
4958 3768 1881 4584 1991 3735 6004 4584 1881 3869 1851
6317 3249 2677 4958 790 3432 3869 4584 4958 1881 1851

3768 3869 790 1027 3210 1881 4584 2467 3869 3350 4584
2467 4584 1745 2467 6317 790 2467 3869 4958 4584 3432
2117 4584 4958 3768 1881 4584 102 4958 1881 4229 2467
3869 3432 4229 6317 2467 2677 3768 3249 4584 4958 1881
1851 3768 3869 790 1027 3210 1881 3143

By decomposing the resulting encrypted message, an array
of 725 bytes long has been obtained. Therefore, it has been
necessary to divide the message into three images, of which
the first image contains 255 bytes, and its dimension area is
12 by 12 high and wide. Similarly, the second image has the
same characteristics as the first one as the length of its bytes
is about 255. Finally, the third image contains 215 bytes, and
its dimensions are 11 by 11 high and wide. Once the images
have been defined, the bytes are hidden in the RGB layers.
The resulting images have been illustrated in Figure 4.

(a) First image (b) Second image (c) Third image

Fig. 4 Three images generated with the applied algorithm

C. Time Measurements

The data in Table 2 compare the encryption and decryption
time using different message lengths.

TABLE II
TIME MEASUREMENTS

Number

of characters

RSA based

encryption

RSA base

decryption

Encryption

time (s)

Decryption

time (s)

104 0.18 0.26 0.18 0.3
208 0.27 0.65 0.31 0.66
366 0.41 0.76 0.46 0.85
539 0.59 0.92 0.63 0.98
733 0.76 1.29 1.05 1.79

D. Comparison According to the Weight of the Image

Table 3 lists encrypted images with the algorithm proposed
in this work compared to the basic steganography algorithm,
similar to that described in Abbas et al. [26]. Significant
differences in the weights result from the given images. Some
encrypted images with basic steganography have been created
to demonstrate the comparison. The obtained images are
illustrated in Figure 5.

(a) First image (b) Second image

Fig. 5 Encrypted images with basic steganography

TABLE III
COMPARISON ACCORDING TO THE WEIGHT OF THE IMAGE

Text to encrypt

Encrypted

image: proposed

method

Weight

(Bytes)

Encrypted

image:

steganography

Weight

(Bytes)

This is a hidden
message sent through
an image

Figure 3 725 Figure 5a 246000

This is through the use
of the RSA encryption
algorithm and a
variant of the
steganography
technique

Figure 4 2095 Figure 5b 248000

E. Complexity analysis

In this section, the characterization of the run time of the
algorithm has been conducted, considering the size of the data
structure provided, as the original input (character string in
natural language). Besides, an analysis of the space used for
data processing will also be performed, as explained further
below:

The string generated after the original message has been
encrypted (i.e., original string) through the RSA algorithm
and will be transformed into bytes (i.e., data type handled by
programming languages). These bytes oscillate in values
between 0 and 255, coinciding with the number of values used
to describe the RGB color standard. The growth rate of
computational steps has been analyzed as they depend on the
input size (i.e., the original string characters). The equivalent
is converted to an approximate average of five bytes per
character when given the RSA conversion process. The

1437

number of entries being the number of bytes resulting from
the previous process.

In this way, we define the following variables: n is the
number of characters of the original string; x is the number of
digits obtained after encrypting the original string using RSA
(those that are treated as characters), and y is the number of
bytes that are obtained after decomposing the encrypted string
for each x. From the above, the number of bytes to process
resulting from a string of n characters may be defined by the
equation (3).

 � = 4 ∗ � (3)

� = 5 ∗ �

This algorithm demonstrates a growth complexity O(n).
The algorithm’s nature will always move an array of constant
dimensions through the encryption process. That will be the
number of performed operations, which will not increase with
each completed cycle. When setting the image’s dimensions,
the total input number is divided by two and later, get its
square root to establish the dimension of each side of the
matrix. Therefore, when traversing the matrix through nested
loops, we have a total of operations defined by the
multiplication of the image’s height and width. However,
being the same, we obtain the constant value of n/2 operations
per image.

Fig. 6 The graphic demonstration of the iterations growth rate by stretching
the number of iterations versus the input in bytes.

Nevertheless, it is fundamental to emphasize that it may be
very likely to need more than a single image in a normal
process of hiding a message. Therefore, it will be necessary
to add every performed n/2 operation about each image to
receive the algorithm’s total operations. As illustrated in
Figure 6, the number of bytes in the algorithm input increases,
the number of operations grows linearly.

F. Discussion

As stated within the study results, seemingly long
messages can be hidden in multiple images that are, in other
terms, a visual representation of data. As the proposed method
is a mask to hide information, the time it takes to build each
image is meaningless compared to the time it takes to encrypt
information using RSA. As the input data increases in size,
the time it will take to hide the information will rise on a linear
scale as stated in the algorithm analysis's complexity, raising
concerns about how the algorithm performs on massive
amounts of data, and this is the result of the images being built
pixel by pixel. Modifications are required to process data in

batches, increasing performance and making it a feasible
solution to hide massive amounts of corporate data in a
reasonable amount of time.

Opposed to traditional steganography, where an already
existing image is required to hide sensitive information,
which is, in most cases, an image with a considerable size,
generating an image from specific data reduces the output file
size. This finding is a significant advantage when it comes to
storing large amounts of data in an image format.
Nevertheless, the current method of hiding data raises clear
concerns about security. For instance, the set of rules needed
to be specified for the algorithm to work can lead to weak
patterns due to human intervention in how the data must be
stored. Thus, discovering a pattern could be hard and time-
consuming; once it is found and recorded, it is simpler to
retrieve data from other images that happen to use the same
pattern.

The proposed method's current state opens new paths of
increasing the security of hidden data through images. An
improved version of the method is needed to use it on real-
world applications such as hiding massive amounts of
sensitive data or replacing QR codes with efficient data
storage public patterns and data generated images. This result
leads the investigation into further development of public and
private custom patterns to hide information within images
compared to public and private keys used on RSA
cryptography, increasing the method's security and reliability,
making it independent of other cryptography systems. Tree
Parity Machines are considered a feasible solution to
exchange keys between two parties, using neural
cryptography [20] instead of traditional asymmetric
cryptography. This method of exchanging data securely
through the internet can be modified to train TPM to generate
unique, strong patterns each time a new image is built, instead
of user-defined rules.

IV. CONCLUSION

The application of this technique has been achieved
successfully, as it reached to hide messages, as it first,
encodes them in an encrypted text using RSA. In contrast,
afterwards, this text will be converted into an array of bytes
stored in the RGB layers of one or more computer-generated
images in data transmission. The Theory of Probability and
the Java recursion technique has been used to determine the
number of images sent and bytes that correspond to each
image. The results reveal that the re-encryption is independent
of carrier images. The number of different ways to organize
the pixels and generated images allows the method to be very
secure, as previously demonstrated in the section about"
Security level of the algorithm based on Theory of
Probability." Moreover, over encryptions, combined with the
steganography technique, increases the security level of
private messages. As future work, we have planned a pseudo-
random method, which selects which layer and pixel will
contain relevant data.

ACKNOWLEDGEMENT

This scientific research funding is provided by Mobility
Regulation of the Universidad de las Fuerzas Armadas ESPE,
from Sangolquí, Ecuador. The authors are grateful to the

1438

Ecuadorian Corporation for the Development of Research and
the Academy (RED CEDIA) for this study's development
within the Project Grant GT-Cybersecurity. Furthermore, this
research is part of the Research Project results entitled
"Detection and mitigation of Social Engineering attacks using
Cognitive Security".

REFERENCES
[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining

digital signatures and public-key cryptosystems,” Commun. ACM, vol.
21, no. 2, pp. 120–126, 1978.

[2] Y. Liu and J. Zhang, “Large — Capacity LSB information hiding
scheme based on two-dimensional code,” in 2017 7th IEEE

International Conference on Electronics Information and Emergency

Communication (ICEIEC), 2017, pp. 528–532, doi:
10.1109/ICEIEC.2017.8076621.

[3] S. Mukherjee, S. Sinha, S. Chakrabarti, and T. Mukhopadhyay, “A
meticulous implementation of RSA Algorithm using MATLAB for
image encryption,” in 2017 1st {International} {Conference} on

{Electronics}, {Materials} {Engineering} and {Nano}-{Technology}

({IEMENTech}), 2017, pp. 1–6.
[4] J. Nath and A. Nath, “Advanced Steganography Algorithm using

encrypted secret message,” Int. J. Adv. Comput. Sci. Appl., vol. 2, no.
3, 2011.

[5] K. Muhammad, J. Ahmad, M. Sajjad, and M. Zubair, “Secure image
steganography using cryptography and image transposition,” arXiv

Prepr. arXiv1510.04413, 2015.
[6] S. Almuhammadi and A. Al-Shaaby, “A survey on recent approaches

combining cryptography and steganography,” Comput. Sci. Inf.

Technol. (CS IT), 2017.
[7] S. M. A. Asbeh, S. M. Hammoudeh, and A. Hammoudeh, “AES

Inspired Hex Symbols Steganography for Anti-Forensic Artifacts on
Android Devices,” vol, vol. 7, pp. 319–327, 2016.

[8] A. Gutub and K. Alaseri, “Hiding shares of counting-based secret
sharing via Arabic text steganography for personal usage,” Arab. J. Sci.

Eng., pp. 1–26, 2019.
[9] K. Patani and D. Rathod, “Advanced 3-Bit LSB Based on Data Hiding

Using Steganography,” in Data Science and Intelligent Applications,
Springer, 2020, pp. 383–390.

[10] Y. Xiang, D. Xiao, R. Zhang, J. Liang, and R. Liu, “Cryptanalysis and
improvement of a reversible data-hiding scheme in encrypted images
by redundant space transfer,” Inf. Sci. (Ny)., vol. 545, pp. 188–206.

[11] A. A. AL-Shaaby and T. AlKharobi, “Cryptography and
Steganography: New Approach,” Trans. Networks Commun., vol. 5,
no. 6, p. 25, 2017.

[12] B. Karthikeyan, A. Deepak, K. S. Subalakshmi, A. R. MM, and V.
Vaithiyanathan, “A combined approach of steganography with LSB
encoding technique and DES algorithm,” in 2017 Third Intern. Conf.

on Advances in Electrical, Electronics, Information, Communication

and Bio-Informatics (AEEICB), 2017, pp. 85–88.
[13] M. Khan, S. S. Jamal, and U. A. Waqas, “A novel combination of

information hiding and confidentiality scheme,” Multimed. Tools

Appl., vol. 79, no. 41, pp. 30983–31005, 2020.
[14] S. J. Indrabi, N. Saini, and M. Mohan, “Secure data transmission based

on combined effect of cryptography and steganography using visible
light spectrum,” Int. J. Pure Appl. Math., vol. 118, no. 20, pp. 2851–
2860, 2018.

[15] P. Chaudhary, “A Novel Image Encryption Method Based on LSB
Technique and AES Algorithm,” in Computational Methods and Data

Engineering, Springer, 2020, pp. 539–546.
[16] N. A. Al-Juaid, A. A. Gutub, and E. A. Khan, “Enhancing PC data

security via combining RSA cryptography and video based
steganography,” J. Inf. Secur. Cybercrimes Res., vol. 1, no. 1, 2018.

[17] S. M. Hardi, M. Masitha, M. A. Budiman, and I. Jaya, “Hiding and
Data Safety Techniques in Bmp Image with LSB and RPrime RSA
Algorithm,” in Journal of Physics: Conference Series, 2020, vol. 1566,
p. 12084.

[18] E. J. Kusuma, C. A. Sari, E. H. Rachmawanto, and others, “A
combination of inverted LSB, RSA, and Arnold Transformation to get
secure and imperceptible image steganography,” J. ICT Res. Appl., vol.
12, no. 2, pp. 103–122, 2018.

[19] R. H. Thayer, S. C. Bailin, and M. Dorfman, Software requirements

engineerings. IEEE Computer Society Press, 1997.
[20] É. Salguero Dorokhin, W. Fuertes, and E. Lascano, “On the

Development of an Optimal Structure of Tree Parity Machine for the
Establishment of a Cryptographic Key,” Secur. Commun. Networks,
vol. 2019, 2019.

[21] T. Fritzmann, T. Pöppelmann, and J. Sepulveda, “Analysis of error-
correcting codes for lattice-based key exchange,” in Intern. {Conf.} on

{Selected} {Areas} in {Cryptography}, 2018, pp. 369–390.
[22] M. A. Alia, K. A. Maria, M. A. Alsarayreh, E. A. Maria, and S.

Almanasra, “An Improved Video Steganography: Using Random
Key-Dependent,” in 2019 IEEE Jordan International Joint

Conference on Electrical Engineering and Information Technology

(JEEIT), 2019, pp. 234–237, doi: 10.1109/JEEIT.2019.8717368.
[23] A. J. Ahmad, “Text in Image Steganograghy Using LSD Method,”

Middle East University, 2014.
[24] W. Fuertes, F. Meneses, L. Hidalgo, and J. Torres, “RSA Over-

Encryption Implementation for Networking: A Proof of Concept
Using Mobile Devices.”

[25] E. C. Molina, “The theory of probability and some applications to
engineering problems,” Trans. Am. Inst. Electr. Eng., vol. 44, pp. 294–
301, 1925.

[26] M. S. Abbas, S. S. Mahdi, and S. A. Hussien, “Security Improvement
of Cloud Data Using Hybrid Cryptography and Steganography,” in
2020 International Conference on Computer Science and Software

Engineering (CSASE), 2020, pp. 123–127.
[27] W. Fuertes, J. E. L. de Vergara, F. Meneses, and F. al Galán, “A

generic model for the management of virtual network environments,”
in 2010 IEEE Network Operations and Management Symposium-

NOMS 2010, 2010, pp. 813–816.

1439

