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Abstract— The control implementation loops for the chemical process require measurements and variable estimations that are hard, 

difficult, and expensive; this is due to the lack of reliable devices, delays, wrong measurements, and expensive devices. The state 

estimation and non-linear systems parameters let restores state variables that the process requires to identify using the input and output 

known variables. This paper presents four-state estimators, Luenberger observer, Unknown Inputs, Sliding modes, and Kalman Filter, 

applied to a chemical process in a Continuous Stirred-Tank Reactor (CSTR) at three dynamics: concentration (CA), temperature (T), 

and temperature of the jacket (Tj). The estimation of the dynamics is carried out from the measurement of the values of the inputs and 

outputs of the process. Each estimator was tuned to have values close to the real ones. The three dynamics of the CSTR were assessed 

with perturbations and parametric changes based on the chemical process's phenomenological model. The estimators' results were close 

to those of the real process, with estimated deviations of the state variables between 5% and 10% of the real value. The SMO algorithm 

accepts a greater range of variation at nominal flow input F until 30%, while KF, UIO, and OL reach 5% maximum; this makes possible 

better estimation of chemical process variables in a CSTR using SMO. 
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I. INTRODUCTION

At an industrial level, knowing dynamics with veracity, 

such as angular velocity, temperatures, torque, and 
concentration, allows identifying variables that directly affect 

a process in order to make the necessary corrections and 

maneuvers as a response to failures. With this consideration 

in mind, several state estimators have been proposed to tackle 

certain requirements, such as convergence time, type of 

process (chemical, electromechanical, pneumatic, among 

others), dynamics, parameters to estimate, as well as other 

guidelines present at the time of performing mathematical 

development in a state observer. Based on a review of the 

reconstruction of variables from data acquisitions, in the 

1960s, the search for solutions to the estimation of states 
began with the Kalman filter [11],[14] and the Luenberger 

observer [13], becoming the major references in the field. It 

has also been proven that the estimation from unknown inputs 

is of significant importance due to the scarce knowledge or 

the difficult reconstruction of a physical input (manipulated 

or not) of the process [4]. In addition to those mentioned, there 

are estimators that use different tools or mathematical 

concepts, such as the observer-based estimator [15] and the 

high-order sliding-mode observer [8-9, 21], which provide a 

wide range for the study of specific cases. 

A CSTR (Continuous Stirred-Tank Reactor) chemical 
processes have dynamics and parameters, generally unknown 

in mathematical modeling, obtained from mass and energy 

balances equations, such as concentration and temperature. 

The mass and energy balances allow identifying both the 

number of state variables and the minimum number of 

parameters for their correct operation. Additionally, the 

convergence, stability, and observability criteria allow 

defining the best estimation strategy to use. At an industrial 

level, the excessive cost and availability of final control 

elements [10], such as sensors, have increased software used 

to estimate non-measurable parameters.   

In industrial processes, it is usually difficult to know the 
variables and parameters of the model in real-time due to 

instrumentation, excessive costs, coupling with other control 

systems, noise levels, among other factors [16]. In addition to 
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the estimation of states, using the same algorithms used in the 

estimators, it is possible to reconstruct the model's unknown 

parameters from the input and output readings of the real 

process. 

Chemical processes have been highly studied in the 

industrial sector. Process Engineering currently supports the 

use of estimators in heat exchangers, continuous reactors, 

distillation towers, among others [17]. This work proposes the 

construction and performance evaluation of four estimators, 

the Kalman filter, the Luenberger observer, the Unknown 

Input observer, and the sliding-mode observer [12]. The 
estimators' design was carried out in a linearized plant from a 

non-linear one, showing the process of linear approximation 

and choosing the operation points that allow building the 

theory of the estimators on linear and smooth models. Fig. 1 

shows a flow chart so that the estimation research stages are 

seen properly and systematically. 

 

 
Fig. 1  Flow chart of research stages 

II. MATERIAL AND METHOD 

A. Continuous Stirred-Tank Reactor (CSTR) 

In this work, a chemical reactor, operated in continuous 

mode, is approached with the dynamics of concentration and 

temperature to estimate the four aforementioned estimators' 

efficiency. Internally, the CSTR produces a chemical reaction 

inside the tank that transfers energy from the reactive mass 

within the cooling fluid that recirculates through the jacket, 

covering the reactive mass on the outside [6]. 

An exothermic reaction, A → B, occurs inside the tank. Fig. 

2 shows the CSTR reactor structure, the dynamics process, 
the manipulated inputs, and the control elements. The 

constructed model is based on mass and energy balances, 

where the concentration dynamic, CA, is the first balance per 

component followed by the energy balance of temperature for 

the reactive mass, T, and by the temperature of the cooling 

fluid the jacket, Tj.  Given the existence of external dynamics 

that affect the behavior of the CSTR, assumptions were made 

to the model to limit the problem and reduce the number of 

dynamics to work with [1],[3].  

B. Model Equations and Assumptions  

In this case, study, since we assume that the level is 

controlled, the volume is constant; therefore, the model is 

composed of three state variables: CA, T, and Tj. In addition, 

the following assumptions were made [1]:  

 The concentration of the reagent is uniform inside the 

reactor. 
 The reactor operates at a constant volume. 

 The temperature of the jacket and the reactive mass are 

uniform. 

 The heat retained by the metal walls inside the reactor 

is insignificant.  

 The densities of the fluids remain constant.  

 

 
Fig. 2 Diagram of the CSTR process with recirculation in jacket. 

 
Equations 1-3 are commonly referenced in CSTR chemical 

process studies and are derived from the results of materials 

and energy balances [1], [3]. Equation 1 corresponds to the 

balance of the components of reagent A, Equation 2 

corresponds to the energy balance of the reactor's internal 

temperature, and Equation 3 corresponds to the energy 

balance of the jacket's temperature. 

 

 ��� � �� ���	 
 ��� 
 �������� (1) 

 �� � �� ���	 
 �� 
 Δ���� �������� � ������ ��� 
 �� (2) 

 ��� � ����� ���� 
 ��� 
 ��������� ��� 
 �� (3) 

The actual parameters that feed the modeling equations 

were chosen for the simulation prior to constructing the 

estimators in MATLAB® Simulink. Table 1 details the 
nominal values and units [1]. 

Where F is the inflow to the reactor, V is the volume of the 

reactive mass, Cin is the concentration of the reagent at the 

entrance to the reactor, CA is the concentration of the reagent 

inside the reactor, k0  is the Arrhenius constant of the reaction, 

E is the activation energy, R is the gas constant, T is the 

temperature inside the reactor, Tin is the input temperature of 

the reagent, ∆H is the heat of reaction, ρ is the density of the 

mixture in the reactor, cp is the specific calorific capacity, U 

is the heat transfer coefficient, A is the heat transfer area, Tj 

is the temperature inside the jacket, Fjf is the jacket flow, Vj is 
the jacket volume, Tjf is the input temperature of the jacket, ρj 

is the density of the fluid in the jacket, and cpj is the calorific 

capacity of the fluid in the jacket [3]. 
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TABLE I 

NOMINAL PARAMETERS OF THE CSTR 

Variable Value Variable Value    0.1605 ! 1000 " 2.4069 #$ 3571.3 ��	 2114.5 % 2.6x104 

� 2.83x1011 & 8.1755 ' 75361.1  �� 0.3776 ( 8.3174 "� 0.2407 ��	 295.22 ��� 282.96 )* -9x1014 !� 1000 

C. Linearization 

As a previous step to the construction of the estimators 

based on linear models, we propose a linearization under an 

operating point (as seen in Table. 2) with the model Equations 
1-3. 

TABLE II 

STATES AND STEADY-STATE INPUTS 

Operative points 

Variables Value Unit 

  663.862501612603 gmol m-3 � 320.236393435742 K ��  287.775973873343 K   0.1605 m3min-1  �� 0.3776 m3min-1 

 

Once the partial derivatives with respect to the states and 

inputs were found, the linearization process is performed 
under a dynamic operating point by taking a non-linear 

system to a linearizing one [20]. Equations 4-5 explain the 

model in state-space with incremental variables. 

 

+Δ���
Δ��
Δ��� , � -
0.212 
8.545 00.004 0.126 0.0240 0.233 
1.8027 +Δ��

Δ�
Δ��

, �
-602.7
10.40 7 Δ    (4) 
 +Δ��Δ�Δ��

, � -1 0 00 1 00 0 17 +Δ��Δ�Δ��
, � -0007 Δ  (5) 

 
With the linearized system in deviation variables, the 

concept of stability by location of poles in the real-imaginary 

plane is identified within matrix A of the CSTR reactor 

dynamics. There is the possibility to analyze the stability of 

the system using the Lyapunov functions. For the system 

described in Equation 4, based on system A's matrix, we used 

the direct method to identify the poles through A's 

eigenvalues. The location of the poles of A was obtained 

using Equation 6. ;< � 
0.0417 � 0.0494>; ;@ � 
0.0417 
 0.0494>  ;A � 
1.8045 (6) 

From Equation 6, it can be concluded that the poles of our 

system have negative real and imaginary parts, guaranteeing 

the stability condition of the three dynamics by being located 

in the left half-plane of poles and zeros.  

D. Comparison of Linear vs Non-linear Model 

The Kalman filter and the state observer models work 

correctly once the corresponding plant is in its deviation 

variables, based on a linearized model under a neighborhood 

around the operating point. The Kalman state and filter 

observer models work correctly once the corresponding plant 
is in its deviation variables in a linearized manner under one 

operating point boundary. The comparison between the linear 

and the non-linear model of the CSTR was carried out under 

a 5% change in parameters at the entrance of F, validating its 

maximum tracking of the states of the system in the vicinity. 

E. Observability 

After reviewing the stability and linearization of the 

chemical process, it is necessary to know the observability test, 
where, for linear systems, it is sufficient to obtain the range of 

the observability matrix that involves the previously 

linearized matrix. The output matrix C directly involves the 

states to be measured and known. In this paper, we propose to 

measure the internal temperature of the reactor T (reactive 

mass) and to estimate the dynamics of the concentration of A 

(CA) and of the temperature of the jacket Tj [9]. In Equation 

7, the matrix of order 3x1 and its range are identified. 

 (BCD��EFGH� � - ��&�&@7 � 3  (7) 

Equation 7 shows a complete column equal to three, 

concluding that the three mentioned states could be observed. 

It is thus guaranteed that the system is observable and that the 

Luenberger observer will have no restrictions. For the 

Unknown Input Observer (UIO), the proposed observability 

matrix was analyzed in detail to use two inputs: feed flow F 
and flow entering the reactor’s jacket Fjf. 

III. RESULTS AND DISCUSSION 

A. Luenberger Linear Observer  

For the Luenberger Linear Observer, the linearized plant 

was considered as described in Equation 8. )I��J� � &)I�J� � K)L�J� 

 ΔM�J� � �ΔI�J� (8) 

Where Equation 8 represents the plant in deviation 

variables, with states and inputs x(t) and u(t), respectively. For 

the design of the Luenberger observer, a structure was 

proposed in Equation 9 [13]. 
 

 ΔIN��J� � &ΔIN�J� � KΔL�J� � OP�M 
 MN� (9) 

 

The correction in the estimation of the proposed model is 
directly reflected in the choice of the correction matrix Ke, 

showing that it can be forced to have an adjustable dynamic, 

with the direct design under the location of poles in the 

desired polynomial that meets the conditions of convergence, 

stability, and speed [13]. 

 QR � S@ � 10.8S � 29.3 (10) 
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The fastest pole from Equation 6 was chosen for the desired 

polynomial. The desired polynomial is exposed in Equation 

10, and the Luenberger matrix Ke is chosen in Equation 11. 

 OP � -
0.6718
0.00040.285007 (11) 

From the Luenberger observer of the linear and non-linear 

models, the estimates were analyzed by assuming the 

temperature T and estimating the concentration of A and the 

jacket's temperature. By measuring the temperature in the 

reactive mass of the CSTR, both CA and Tj were estimated 

using a linear Luenberger observer (see Fig. 3 and 4).  

 

 
a. Away from the point of operation 

 
b. Change in input 

Fig. 3 Estimation of CA by the Luenberger Observer. 

 

Fig. 3(a) and Fig. 4(a) show changes in the input of 5%, 

which suggests that the concentration estimate is more 

difficult to correct than the error it generates, with changes in 

the input in the minute 300. 

The temperature in the jacket, estimated in Fig. 4(a), begins 

from a point far from the operating point and, in the face of 

changes in the inputs and the noise in the measurement, it is 

identified in Fig. 4(b) that the dynamics Tj and �T�  do not 

undergo changes before the flow F due to the disturbance at 

300 minutes. 

 

 
a. Away from the point of operation 

 

 
b. Change in input 

Fig. 4 Estimation of Tj by the Luenberger Observer. 

B. Unknown Input Observer (UIO) 

A linearized plant is proposed under an operating point, 

described by Equation 12. The model is described in deviation 

variables, and the adjustment matrix for the UIO is identified 

by the letter D, multiplied by the vector of unknown inputs. 

 )I��J� � &)I�J� � K)L�J� � UV�J� )M�J� � �)I�J�  (12) 

 

Where xϵRk, uϵRn, vϵRp and yϵRp, are the state vector, the 

known inputs vector, the unknown inputs vector, and the 
output system, respectively [5]. The inputs are defined to 

perform the observer with unknown inputs as follows: the first 

input is the flow to the reactive mass F (unknown), and the 

second input, the known, is the flow that feeds the jacket F 

(known). Once the inputs were chosen, the value of matrix B 

in Equation 12 changes. Finally, matrices B and D are shown 

in Equation 13. 

 K � - 00
20.097 ; U � -602.6995
10.39360 7  (13) 

To obtain matrices B and D, we follow the steps proposed 

in [15], in which an estimator of unknown inputs is proposed, 

shown in Equation 14, where Ŵ�is the new estimated vector 
that feeds back from the original estimated state of Equation 

12, and the matrices N, L and G are known. Following the 

steps proposed in [15], the range of observability of (PA, C) 
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gave a value. It can be concluded that the temperature of the 

jacket Tj is estimated from the measured state T. 

Ŵ� � YW � ZM � [L 

 IN�J� � W 
 'M (14) 

From the identification of the location of the eigenvalues 

of N, it is observed that the first is in the right half-plane and 

represents instability and is not observable (see Fig.  7). The 

non-estimated state is concentration. The poles of the matrix 

N are shown in Equation 15. ;Y< � 0.0022 ;Y@ � 
1.802 

 ;YA � 
1.000 (15) 

Following the steps of [15], from the UIO design, it was 

obtained that the gain of the observer KUIO has two static 

dynamics, one of them being variable. The dynamics were 

modified to guarantee convergence in the estimation of the 

states T and Tj, related to the temperature of the reactive mass 

in the CSTR. 

Estimates of T and Tj were obtained from the Unknown 

Input Observer, as shown in Fig. 5 and Fig. 6. From Fig. 5(b) 

and Fig. 6(b) it can be seen that, before the noise in the 

measurement of T, the same variable can be estimated 
correctly and, in addition, the temperature of the jacket in the 

reactor can be estimated, having as an aggravating factor that, 

for this system, the feed flow to the reactor is unknown. Fig.  

5(a) and Fig.  6(a), with a different operating point, correctly 

observe the state. 
 

 
a. Away from the point of operation 

 
b. Change in input 

Fig. 5 Estimation of T by the UIO. 

 
a. Away from the point of operation 

 

 
b. Change in input 

Fig. 6 Estimation of Tj by the UIO 

 

In Fig. 7 it is observed that the estimate of CA never really 

converges due to the reason explained above that the poles are 

located in the right half-plane. 

 

 
Fig. 7 Estimation of CA by the UIO. 

C. Kalman Filter 

The Kalman filter is a state estimator that calculates the 

state of a linear dynamic system, disturbed by noisy signals, 

from measurements that are linearly related to the state, 

without any filter, similar to noisy signals found in real life 

[3]. From the proposed deduction of the Kalman filter, the 

improvements proposed [3], and the equations that govern 

this filter [11], the design of the Kalman filter is proposed 

using the algorithm developed in the MATLAB® subroutines, 

where it is only necessary to have the system in the linearized 

state space and choose the tuning matrices Q and R. 

As presented in previous observers, the Kalman filter has a 
correction factor that helps filter the corresponding signal in 

the estimation. The tuning matrices and Kalman gain matrices 
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(KKalman) were chosen for the filter operation as shown in 

Equation 16, respectively. 

 \ � 100; ( � 1; O]^_`^	 � -
5898.56103.850.2286 7 (16) 

As in the two previous estimators, the variable measured in 

the CSTR was the reactive mass temperature. The estimation 

of CA and Tj was performed, as shown in Fig.  8 and Fig. 9. In 

Fig.  8(a) and Fig.  9(a) the estimator reaches the desired value 

out of its operating point. 

 
a. Away from the point of operation 

 

 
b. Change in input 

Fig. 8 Estimation of CA using the Kalman Filter. 

 

From the tuning of the Q and R matrices, a good response 

to the estimation of CA and Tj was obtained by considering 

that the observer was launched from an arbitrary point and 

that the input had a change in the step of 5% at 60 minutes 

(see Fig.  8(b) and Fig.  9(b)). 

 

 
a. Away from the point of operation 

 
b. Change in input 

Fig. 9 Estimation of Tj using the Kalman Filter. 

D. Sliding Mode Observer (SMO)  

Consider the plant described in Equation 17, where xϵRn, 

yϵRm, uϵRp are defined as states, outputs, and inputs, 

respectively. 

ΔI��J� � &ΔI�J� � KΔL�J� 

 ΔM�J� � �ΔI�J� (17) 

To apply this method, the system of Equations 17 must be 

transformed into two dynamics: one of the measured states 

and the other of unmeasured states [9]. The discriminated 
model is shown in Equation 18. M� � &<<M � &<@I< � K<L 

 I�< � &@<M � &@@I< � K@L  (18) 

In Equation 18, M� is measurable and I�<  is not measurable, 

considering that the values of A11, A12, A21, A22, B1 and B2 are 

known. Once the model has been transformed into measurable 

and non-measurable dynamics [7],[18], the extended 

Equation 19 describes the Sliding Mode Observer (SMO) [19]. 

MN� � &<<MN � &<@IN< � K<L � Z<S>DC�M 
 MN� 
 IN�< � &@<MN � &@@IN< � K@L � Z@Z<S>DC�M 
 MN� (19) 

The estimator's correction factor is chosen between L1 and L2, 

multiplied by the function sign(x). To find these values, the 

dynamics of the error is developed in the measurable part ��M� � M̄ � M 
 MN . From the linearized plant under a 
neighborhood and the procedure proposed in [7],[18], the 

estimator was performed with the gain values determined as 

follows: 

 Z< � 10; Z@ � 1  (20) 

 
a. Away from the point of operation 
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b. Change in input 

Fig. 10 Estimation of CA by the SMO. 

 

CA and Tj were estimated using a sliding-mode observer by 

employing, as a measured variable, the reactor's internal 

temperature. Fig. 10 and Fig. 11 show such behavior. 

According to the sliding-mode observer, the gains L1 and L2 

vary, the chattering directly affects the estimation [2]. 

 

 
a. Away from the point of operation 

 

 
 b. Change in input 

Fig. 11 Estimation of Tj by the SMO. 

 

As L1 increases, the robustness improves considerably, as 

seen in Fig. 10 (b) and Fig. 11 (b). The CA and Tj estimate 

under a first-order SMO show good monitoring since 20% 

changes were introduced in the input at 60 minutes of the 

simulation, and they presented greater robustness concerning 

other observers and estimators made with parametric changes 

at the input. 

 

IV. CONCLUSION 

In industry, the implementation of an estimator is 

determined according to the accuracy of the model and the 

relevance of using an approximation of a variable of interest. 

Therefore, the proposed estimators performed correctly in 

simulation. In the CSTR study case, the KF, UIO, and OL 

algorithms accept a range of variations at nominal flow input 
F until 5%. At the same time, SMO achieves a higher one, up 

to 30%, using SMO provides a higher range of operation in 

the tuning of control algorithms, after these disturbance 

values at the input, the CA and Tj dynamics estimations have 

high steady-state errors, hence applying SMO makes possible 

better estimation of chemical process variables in a CSTR. 

Despite chattering in SMO (unwanted phenomenon), it can be 

reduced by applying robust differentiators through the Super-

twisting algorithm (STA), which reduces the estimation error 

and gets a faster response. 
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