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Abstract—The statechart diagram is a behavior diagram in the unified modeling language (UML) diagram. Numerous state chart 

diagrams are taught in computer science majors. In teaching and learning activities, the assessment process is essential. A teacher is 

required to be objective in assessing. However, objectivity can be affected by inconsistency and fatigue. Thus, an automatic assessment 

is very important. Automatic assessments can help teachers save time while assessing answers given by multiple students. By combining 

semantic and structural similarities, we propose a method to evaluate statechart diagrams automatically. Semantic comparison is 

conducted based on the lexical information from the states and transitions between the two diagrams. We then use a combination of 

cosine similarity, Wu palmer, and WordNet to assess the semantic similarity between the two diagrams. The structural assessment is 

conducted on the basis of the structure of the two diagrams using the greedy graph edit distance. The diagram structure is obtained by 

translating the diagram into several graphs. The graph is divided into two types of subgraphs, namely intraSim subgraph and interSim 

subgraph. Further, our results demonstrate that the proposed method agrees well with the state chart diagram assessed by the teacher. 

The agreement value between the teacher and our proposed method is an almost perfect agreement. In the assessment process, we 

observe that teachers see the structure of the statechart diagram instead of the lexical of the statechart diagram. 
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I. INTRODUCTION

The statechart diagram is a diagram in the unified modeling 

language (UML) diagram. Statechart diagrams describe the 

behavior of objects and representations of the life cycle of 

objects in software [1]. They can act as tools for testing 

functional software [2], [3]. Moreover, the notation on the 

statechart diagram is the design language used to describe the 

major software modules [4]. Statechart diagrams are generally 

taught in tertiary institutions, especially in the field of computer 

science. In the learning process, assessment is a problem 

complained about by teachers. 

Additionally, the main cause of the teachers’ complaints 

arises from the number of answers that must be assessed [5], 

[6]. Another cause is that teachers often become inconsistent 

while assessing student answers [7]. Therefore, an automatic 

assessment concept can be used to solve this problem. An 

automatic assessment method can help teachers to correctly 

evaluate their students’ answers with a fixed assessment 

standard. 

Statechart diagrams can be automatically assessed by 

measuring the similarity between any two statechart diagrams. 

Previously, automatic assessment has been applied to use case 

diagrams. Automatic assessment of a use-case diagram can be 

conducted by comparing its lexical information [8]. The 

statechart diagram similarity was only measured for reuse and 

clone detection and not for assessment. Similarity 

measurements were separately performed. First, the 

measurement uses lexical information syntactically. Second, 

the measurement uses state and transition flow structures. 

Herein, we combined these two pieces of information and 

detailed the contents of the information in our similarity 

measurement. Therefore, similarity assessment becomes 

comprehensive. 

In UML diagrams, similarity measurement has been 

extensively studied [9], [10]. In addition, Storrle [11] 

syntactically measured the similarity between two statechart 
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diagrams based on their lexical properties. He aimed to detect 

clones from software designs. The lexical information of a 

statechart diagram is based on the names of the components 

[12]. The similarity in terms of lexical information can be 

semantically calculated using natural language processing 

(NLP) [13]–[15]. Semantic similarities are divided into three 

categories: knowledge-based, corpus-based, and string-based 

[16], [17]. In the case of knowledge-based semantic 

similarities, WordNet [18], [19] is generally used as a 

knowledge base. WordNet-based similarity calculations are 

performed using additional methods such as Wu Palmer [20], 

[21]. In the case of corpus-based semantic similarities, a large 

data corpus and complex data-training process are required. 

Finally, in the case of string-based semantic similarities, only 

those strings that are owned are considered irrespective of the 

meaning of the word. 

Some other previously conducted studies [22]–[24] 

measured the similarity between two statechart diagrams in 

terms of another perspective, namely, the statechart diagram 

structure. The statechart diagram was converted into a graph. 

Moreover, the converted graph comprised states as vertices and 

transitions as edges. Their study aimed to reuse the software 

design. The graph similarity could be measured using the graph 

edit distance (GED) [25]–[27]. The concept of GED is to 

convert the first graph to the second graph. However, GED 

suffers from weakness, i.e., high processing time. Therefore, 

Riesen proposed the approximate GED [28] and greedy GED 

[29] to expedite the process. 

Assessment problems in the computer science course might 

occur for several reasons. First, how to assess the answers by 

students without imposing additional burdens on the teacher 

[30]. Teachers need not spend a significant amount of time to 

conduct assessments. Second, we need to consider the 

objectivity of the assessment [31]. Objectivity can be affected 

by the fatigue and inconsistency of the teacher. Third, many 

students pose a problem in conducting assessments [32], [33]. 

Therefore, in the software engineering course, we need an 

automatic assessment method, the statechart diagram 

assessment. 
This study aims to develop a new method for semantically 

and structurally assessing the similarity between two-

statechart diagrams. Semantic similarity is assessed based on 

the lexical of statechart diagram. Lexical of statechart 

diagrams can be semantically compared. Moreover, the 

structural similarity is assessed based on the structure of the 

statechart diagram. The statechart diagram structure is 

translated into a graph. We compared the two graphs from the 

two-statechart diagrams by utilizing the greedy graph edit 

distance (GED). Our contribution is to obtain the level of 

importance of the assessment component so that our proposed 
method can function as reliably as experts. 

II. MATERIALS AND METHOD 

A. Statechart Diagram Similarity Assessment Characteristic 

The characteristics of the statechart diagram similarity can 

be analyzed in terms of two types of diagrams, namely, lexical 

and structural diagrams. For example, Fig. 1 (a) illustrates a 

pair of diagrams with the same structures and lexically similar. 

Fig. 1 (b) shows another pair of diagrams with different 

structures but lexically similar, as shown in. In addition, we 

have observed that there are lexically similar cases but have a 

low number of states or transitions. 

 

 
Fig. 1  Example of diagram similarity assessment characteristic (a) Example 

1 and (b) Example 2 

 

Furthermore, the answers provided by the students are not 

necessarily the same as the answer keys provided. Therefore, 

the answer diagrams may differ on the basis of how different 

students understand the description of the question. The 

extent of the vocabulary of the students may also influence 

the answers by the students. 

B. Statechart Diagram Assessment 

Statechart diagram similarity (stdSim) between statechart 

diagram d1 and statechart diagram d2 is assessed based on the 

results of semantic similarity (semStd) and structural 

similarity (strucStd). Both have their level of importance 

depending on the way an expert performs the assessment. 

Moreover, the level of importance is denoted by ρ. The value 

of ρ is greater than zero or less than equal to one. Statechart 

diagram similarity can be obtained using Equation 1. 

���������, �
� = �1 − �� × ���������, �
� + � × �����������, �
� (1) 

Equation 1 is the main equation used to assess the similarity 

between two statechart diagrams. The flow of the statechart 

diagram assessment is shown in Fig. 2. The process begins with 

two statechart diagrams in the XMI (XML Metadata 

Interchange) format as input, namely, the answer key diagram 

and the student answer diagram. The extraction results of each 

diagram are divided into four main parts: a lexical collection of 

states, a lexical collection of transitions, a collection of 

subgraphs based on states and transitions (intra graphs), and a 

graph that shows the flow between states (inter graphs). The 

lexical collection is the input to assess the semantic similarity. 

The collection of subgraphs becomes an input to assess 

structural similarity. A more detailed explanation of semantic 

and structural assessment is described in the next section. 
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Fig. 2 Flow of state chart diagram assessment 

 

C. Semantic Similarity Assessment 

The comparison of the semantic similarity is based on the 

meaning of the statechart diagram. NLP [34] can be used to 

compare the meaning of each statechart diagram component. 

We performed a basic NLP on our process based on some 

previously conducted studies [35]–[40]. Besides, the NLP 
process applied is tokenization, point of sale (POS) tagging, 

stopwords removal, lemmatization, and cosine similarity. 

First, we perform tokenization if the component has a lexical 

that may comprise more than one word. Second, POS tagging 

is useful for providing part of speech information from these 

words. Third, meaningless words are removed. Fourth, the 

words are transformed into essential words using 

lemmatization. Fifth, by applying cosine similarity [41], the 

words of the first diagram component are compared with 

those in the second diagram component. In cosine similarity, 

assessment of the similarity between two words is calculated 
using WordNet and Wu Palmer. 

Based on the type of lexical information in the diagram, the 

semantic similarity assessment on the statechart diagram is 

calculated. Lexical information is divided into two types: 

property and transition information. This information sharing 

can be observed in Fig. 3. Property information comprises entry 

activity, do an activity, exit activity, and state. Additionally, 

transition information comprises source state, target state, 

trigger event, and guard.  

Fig. 3 Lexical information on the state chart diagram 

 

Fig. 4  Example of a state chart diagram 
 

For instance, the lexical information obtained from the 

statechart diagram in Fig. 4 can be described as follows: 
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Property 
Property-1 

State: Opened 
Entry Activity: greenLight 
Exit Activity: switchLightOff 

… 
Property-3 

State: Locked 
Entry Activity: redLight 
Do Activity: startMonitoring 

Exit Activity: switchLightOff 
Transition 

Transition-1 
Source State: opened 
Target State: closed 
Trigger Event: closeButtonPressed 
Guard: doorClosing 

… 

Transition-4 
Source State: locked 

Target State: closed 
Trigger Event: lockButtonPressed 

Guard: buttonIsPressed. 

 

As illustrated in Fig. 3, the semantic similarity between 

statechart diagrams d1 and d2 (semStd) is calculated using 
Equation 2. 

 
��������� , �
� = �1 − ����� × ����������, �
� + ���� ×
���������� ,�
�  (2) 

 

The semantic similarity between statechart diagrams d1 and 

d2 comprises property similarity (propSim) and transition 

similarity (tranSim). Each similarity has a different level of 

importance based on an expert's viewpoint. In Equation 2, the 

level of importance of the similarity is distinguished from ρsem. 

In addition, the value of ρsem is from zero to one. 

 

 ����������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ �(+%���(,,�(-�

|/01|
-23

|/03|
,23 �45,6�|/03|,|/01|�

723 4
|+83|9|+81|

 (3) 

 

The property similarity between statechart diagrams d1 and 

d2 is calculated by employing Equation 3. All states in d1 are 

semantically compared with those of d2. ST1 and ST2 comprise 

all states in d1 and d2, respectively. Equation 2 describes the 

greedy algorithm for obtaining the optimal state similarity 

value of d1 and d2. In the greedy algorithm, the changePivot is 

utilized to eliminate the similarity value of state pairs. 

Algorithm 1 demonstrates the flow of changePivot  

Algorithm 1. changePivot 

Input: two dimension matrix and pivot/coordinate maximum 

value (x,y) 

Output: changed matrix 

1. Select pivot 

2. M(x, :) = 0 

3. M(:, y) = 0. 

Line 1 obtains the coordinates of the maximum similarity 

value from the matrix as x and y. Line 2 turns the value in row 

x into zero. Furthermore, line 3 turns the value in column y into 

zero. As shown in Fig. 3, the property of a state comprises 

several components. Therefore, a detailed calculation between 

two states (stSim) is required. The stSim is given in Equation 4. 

 

 ���������, ��
� = :'�+%���"3,�"1�9:'�+%��;'3,;'1�9:'�+%���*3,�*1�9:'�+%���3,�1�
)!*�|�"3|,|�"1|�9)!*�|;'3|,|;'1|�9)!*�|�*3|,|�*1|�9)!*�|�3|,|�1|�

 (4) 

 
Depending on the information established in states st1 and 

st2, state similarity (stSim) between them is calculated. Besides, 

the information is entry activity (en), do activity (do), exit 

activity (ex), and state (s). The semantic similarity of each 

information is calculated by applying NLP, which was 

explained at the beginning of Section II.B. Thus, the total 

similarities of all the information are divided by the number of 

components that are only available in the two states. For 

example, if both states only have a do entry and state, then the 

divisor value is two. 

 

����������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ (+%��(,,(-�

|01|
-23

|03|
,23 �45,6�|03|,|01|�

723 4
|83|9|81|

 (5) 

By applying Equation 5, the transition similarity between 

two statechart diagrams d1 and d2 is calculated. All transitions 

in d1 are semantically compared with those in d2. Further, T1 

and T2 comprise all the transitions in d1 and d2, respectively. 

Equation 5 describes the greedy algorithm for finding the 

optimal transition similarity values of d1 and d2. As depicted in 

Algorithm 1, the changePivot is utilized to eliminate the 

similarity value of transition pairs in the greedy algorithm. 

Based on Fig. 3, the transition of a statechart diagram comprises 

several components. Therefore, a detailed calculation between 

two transitions (tSim) is required. The tSim is presented as 

Equation 6. 

 �������, �
� = :'�+%���<�3,�<�1�9:'�+%��(#(3,(#(1�9:'�+%��(<#3 ,(<#1�9:'�+%��#;3,#;1�
)!*�|�<�3|,|�<�1|�9)!*�|(#(3|,|(#(1|�9)!*�|(<#3|,|(<#1|�9)!*�|#;3|,|#;1|�

 (6) 

 

Based on information observed in transitions t1 and t2, the 

transition similarity (tSim) between them is calculated. The 

information is a source state (src), target state (tgt), trigger (trg), 

and guard (gd). The semantic similarity of each information is 

calculated using the NLP, which was explained at the beginning 

of section II.B. Moreover, the total similarities of all the 

information are divided by the number of components that are 

only available in the two transitions. For example, if both 
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transitions only have source state, target state, and trigger, then 

the divisor value is three.  

D. Structural Similarity Assessment 

By representing the existence diagram into a graph, the 

structural similarity between two statechart diagrams is 

calculated. The proposed graph is a directed graph. Unlike the 

semantic similarity that uses the lexical of the statechart 

diagram component, structural similarity ignores the lexical in 

the statechart diagram. Therefore, the structural similarity only 

considers the structure and type of the statechart diagram 

component. The element of the proposed graph can be observed 

as presented in Table I. Each element in the graph has its name 

and tag. There are two types of elements: vertex and edge. 

There are thirteen elements used in the graphs from statechart 

diagrams. Graph vertices comprise vs, vt, ven, vdo, vex, vtr, and 

vgr, while graph edge comprises et, een, edo, eex, etr, and egr. All 

vertices are connected using the edge. 

TABLE I 

GRAPH ELEMENTS OF THE STATECHART DIAGRAM 

No Element Type Name  Tag 

1 Vertex State vertex vs 

2 Vertex Transition vertex vt 

3 Vertex Entry activity vertex ven 

4 Vertex Do activity vertex vdo 

5 Vertex Exit activity vertex vex 

6 Vertex Trigger vertex vtr 

7 Vertex Guard vertex vgr 

8 Edge Transition edge et 

9 Edge Entry activity edge een 

10 Edge Do activity edge edo 

11 Edge Exit activity edge eex 

12 Edge Trigger edge etr 

13 Edge Guard edge egr 

 

Based on Table I, a statechart diagram can be translated into 

a directed graph. Fig. 5 depicts the translation results of a 

statechart diagram in Fig.4 into a proposed graph.  

 

 

Fig. 5  Statechart diagram translated into a graph 

 

The example statechart diagram comprises four states: start, 

opened, closed, and locked states; in the proposed graph, the 

states become vs1, vs2, vs3, and vs4, respectively. In addition, 

state vs2 has an entry vertex ven2 and an exit vertex vex2. State 

vs3 has an entry vertex ven3 and an exit vertex vex3. State vs4 

has an entry vertex ven4, a do activity vertex vdo4, and an exit 

vertex vex4. The diagram also has five vertex transitions: vt1, 

vt2, vt3, vt4, and vt5. Transition vt1 connects the start state to the 

opened state, while transition vt2 connects opened state to 

closed state. It has a trigger event vertex vtr2 and a guard vertex 

vgr2. Transition vt3 connects closed states to opened states. It 

has a trigger event vertex vtr3 and a guard vertex vgr3. 

Transition vt4 connects the locked state to the closed state. It has 

a trigger event vertex vtr4 and a guard vertex vgr4. Transition 

vt5 connects closed state to locked state. It has a trigger event 

vertex vtr5 and a guard vertex vgr5. 

In the structural assessment of the statechart diagram 

(strucStd), we differentiate between two similarities: intra 

similarity (intraSim) and inter similarity (interSim). Therefore, 

structural similarity can be obtained using Equation 7. Intra and 

inter similarities differ in importance based on the value of ρstr. 

Thus, the value of ρstr ranges from zero to one. It can be 

obtained based on an expert’s perspective of assessment. 

 

�����������, �
� = �1 − ��(<� × �����������, �
� +
��(< × �����������, �
�  (7) 

 

Based on the contents of the state and transition vertices, the 

intra similarity is calculated by considering the subgraphs of 

graphs that have been built. Fig. 6 (a) illustrates the subgraphs 

used to assess the similarity of each state. There are four 

subgraphs used to assess the state of similarity. Fig. 6 (b) 

demonstrates the subgraphs applied to assess the similarity of 

transitions. There are five subgraphs employed to assess the 

similarity of transitions.  

 
 

Intra similarity, which can be written as Equation 8, 

considers the subgraphs of states and transitions. 

 �����������, �
� = &�+%��;3,;1�9&(+%��;3,;1�

  (8) 

The similarity of state and transition vertices is separately 

calculated and then equally shared. The similarity of state 

vertex (vsSim) can be obtained by utilizing Equation 9. 

Furthermore, the similarity of transition vertex (vtSim) can be 

calculated by applying Equation 10. The similarity of state 

vertices is calculated based on a collection of state vertex 

subgraphs statechart diagrams d1 and d2. The collection of the 

subgraphs of state vertex diagrams d1 and d2 is SGS1 and SGS2, 

 
Fig. 6  Subgraphs to assess intraSim: (a) state and (b) transition 
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respectively. All the subgraphs are compared to obtain an 

optimal similarity value. Moreover, the optimal value search 

utilizes the greedy algorithm. In Equation 8, changePivot plays 

an important role in eliminating non-optimal values in the 

greedy algorithm. The flow of changePivot can be observed in 

Algorithm 1. Thus, the similarity assessment between two 

subgraphs employs a greedy GED. To calculate the cost of the 

initial state vertex subgraph (sgsi) to give the final state vertex 

subgraph (sgsj), the concept of GED is applied. 

 =�������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ >?@��#�,,�#�-�

|/A/1|
-23

|/A/3|
,23 �45,6�|/A/3|,|/A/1|�

723 4
|+>+3|9|+>+1|

 (9) 

 =�������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ >?@��#(,,�#(-�

|/A01|
-23

|/A03|
,23 �45,6�|/A03|,|/A01|�

723 4
|+>+3|9|+>+1|

 (10) 

 

Based on a collection of transition vertex subgraphs 

statechart diagrams d1 and d2, the similarity of transition vertex 

is calculated in Equation 9. The collection of subgraphs of 

transition vertex diagrams d1 and d2 is SGT1 and SGT2 in 

Equation 10, respectively. All the subgraphs are compared to 

obtain an optimal similarity value. Using changePivot in 

Algorithm 1, the optimal value search applies the greedy 

algorithm. Then, the similarity assessment between two 

subgraphs also utilizes a greedy GED. To transform the cost of 

the initial transition vertex subgraph (sgti) to give the final 

transition vertex subgraph (sgtj), the concept of GED is 

employed. 

Inter similarity differs from intra similarity. Inter similarity 

is only taken from the main vertex information. Besides, the 

main vertex comprises interconnected state and transition 

vertices. Therefore, as demonstrated in Fig. 5, we do not use all 

the information obtained from the graph. This is because it only 

takes the main vertex information, and the resulting subgraphs 

only have one subgraph. The main vertex comprises state and 

transition vertices. Fig. 7 depicts a form of the subgraph 

obtained from the initial graph. Take subgraphs that only 

contain state and transition vertices. 

 

 
 

As demonstrated in Fig. 7, interSim can be directly assessed 

using other diagrams. Equation 11 shows how to determine the 

similarity between subgraphs sg1 and sg2 from statechart 

diagrams d1 and d2, respectively. Using the greedy GED, this 

direct assessment compares the two subgraphs. 

 

�����������, �
� = BCD��E�, �E
� (11) 

III. RESULT AND DISCUSSION 

A. Dataset 

The General Description dataset used can be seen in Table 

II. The assembled statechart diagram is a collection of the 

students' answers to the questions by the teacher, and the 

students had directly answered the questions. The questions 
contained the name of an object and a description of the 

lifeline of the object. A description regarding the flow of the 

object was provided so that all the students could have the 

same mindset toward the object. However, the limitation of 

this study is that it uses a simple statechart diagram, and we 

are yet to consider the nested state case. 

 
For the evaluation process, we set a gold standard for each 

student's answer. This gold standard is obtained from the 

average of experts’ answers in assessing the similarity of 

students' answers based on the answer key. Experts are 

computer science lecturers in the area of software engineering. 

Furthermore, they must also have taught courses involving 

UML diagrams. Twenty-four experts contributed to this study. 

Moreover, based on the validity of using Pearson [42]–[44] 

and the reliability of using Cronbach's alpha, the answers from 

these experts were statistically tested [45], [46]. Fig. 8 shows 

the correlation results of all expert answers to each assessment 

made. Of the twenty-nine assessments, eleven assessments had 

no correlation that met the critical value at the 0.05 level (2-

tailed). The critical value is 0.349 based on Pearson's 

correlation table. Final statistical test results produce eighteen 

pairs of assessments on the students' answers and answer keys 

from the eighteen experts. The reliability value of the gold 

standard used is 0.947. The agreement's value between experts 

was also tested with inter-rater reliability [47]–[49]. In addition, 

the average inter-rater reliability value is 0.89. 

 

 

 
Fig. 7  Subgraphs for assessing interSim 

TABLE II 

DATASET INFORMATION 

Project Number of 

Answers 

Total State Total 

Transition 

Door 10 45 52 

AC Remote 9 54 74 

Counter 10 42 52 
 

 
Fig. 8  Pearson correlation on expert assessment based on pairs of student 

answers and answer keys 
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B. Evaluation 

We conducted experiments and compared the experimental 

results of the proposed assessment method with those given 

by experts. If both results significantly agree, then the 

proposed method is more reliable. Moreover, based on the 
given answer key, both the expert and our proposed method 

assess the answer from Table II The agreement value is 

calculated by employing Gwet's first‐order agreement 

coefficient (AC1) [50]–[52]. To facilitate the assessment of 

the agreement between our proposed method and the teacher, 

the similarity value generated by both the proposed method 

and the teacher is converted to a scale of one to five. One, two, 

three, four, and five comprise zero to less than twenty, twenty 

to less than forty, forty to less than sixty, sixty to less than 

eighty, and eighty to one hundred, respectively. We 

conducted experiments by combining ρ, ρsem, and ρstr values 
between 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. The 

term ρ is used to calculate Equation 1 to determine the level 

of importance between semantic and structural similarity 

components. The term ρsem is used to calculate Equation 2 to 

determine the level of importance between semantic 

similarity components. The term ρstr is used to calculate 

Equation 7 to determine the level of importance between 

structural similarity components. In addition, the experiment 

was repeated 1331 times with different combinations of ρ, ρsem, 

and ρstr. Fig. 9 shows the highest agreement results obtained 

from each ρ from zero to one. Therefore, the highest 

agreement value obtained is 0.921 with ρ = 0.9, ρsem = 0.8, and 
ρstr = 0.6. 

 
Based on the results of the conducted studies, the 

maximum value of the agreement of the proposed method 

with an expert is 0.897. According to Landis and Koch [53], 

this value is included in the almost perfect agreement. 
Therefore, our proposed method is as reliable as a teacher 

when assessing statechart diagrams. The maximum 

agreement value is ρ = 0.9. In assessing two-statechart 

diagrams, this implies that a teacher tends to look more at the 

structure of the statechart diagram than the lexical of the 

statechart diagram. The best ρsem values obtained are 0. In 

assessing the lexical of a statechart diagram, a teacher pays 

more attention to the transition than the state. The best ρstr 

value found is 0.6; that is, the teacher tends to see the flow 

structure of the statechart diagram instead of the structure in 

the state and transition. 

 

 
Furthermore, we also conducted comparative experiments 

between semantic use only, structural use, and a combination 

of both. Fig. 10 depicts the results of the comparison 

performed. Moreover, it can be observed that the highest 

agreement value is while combining semantic and structural 
similarities. The highest agreement values of the semantic and 

structural similarities are 0.59 and 0.767, respectively. 

Therefore, the use of one component of similarity alone is 

insufficient to produce a reliable automated assessment 

method. From Fig. 8, we can also observe that the structural 

similarity assessment gives a higher agreement value than that 

of the semantic similarity. Following the results of this study, 

the teachers tend to judge the structure of statechart diagrams 

instead of the lexical of statechart diagrams.  

Thus, in assessing statechart diagrams, our proposed 

method is reliable as an expert. Our investigation shows that 
similarity measurements of statechart diagrams can also be 

utilized in clone detection and the reuse of software designs. 

Our proposed method can be applied to more objectives other 

than the statechart diagram assessment. Additionally, this 

study might be used for clone detection and software reuse. 

The weighting settings for the importance of each 

combination proposed herein are flexible. Weight values can 

be changed based on their needs. 

IV. CONCLUSIONS 

This study proposed an automatic assessment method that 

performed as reliable as a teacher in assessing the similarity 

of student answer and answer keys. Since semantic and 

structural similarities can assess the lexical and structural 

diagrams, they are appropriate components for evaluating the 

similarity of statechart diagrams. Semantic similarity 

assessment can compare the lexical based on letters and that 

based on the meaning of words. Structural similarity 

assessment can demonstrate the flow statechart diagram and 

the shape of each component in the statechart diagram. In the 
assessment process, a teacher sees the structure of the 

statechart diagram instead of the lexical statechart diagram. 

The concept of semantic and structural similarities may also 

be used in other UML diagrams. However, the statechart 

diagram used herein is simple. In the future research direction, 

it is necessary to develop an assessment of nested statechart 

diagrams. It is required to find the best combination of ρ, ρsem, 

and ρstr to clone detection and software reuse by involving 

experts working in the industry. 

 

 

 
Fig. 9  The maximum agreement value of the proposed method and the 
expert 

 
Fig. 10  Comparative experiment among semantic similarity, structural 

similarity, and combination 
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