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Abstract— Land monitoring requires remote sensing data, which varies in its spectral and spatial resolution. Remote sensing data with 

the high spatial resolution is especially needed for urban monitoring. However, high spatial resolution data is usually expensive with 

limited coverage and complex analysis. This paper aims to find the most efficient way to do urban monitoring, specifically surface 

material identification. In material identification, the distinctive feature that can be used to differentiate one material surface from one 

another is its reflectance responses. This leads to a question of which absorption features are significant to different surface materials, 

especially roofing materials, and which absorption features are not discriminant enough to be used at classification. This paper proposed 

a machine learning-based identification of roof material types using band combinations as classification features. The experiment was 

done on Pleiades data, multispectral satellite imagery with very high spatial resolution. We first calculated the image’s reflectance 

values for each band and then grouped them based on their spectral range, yielding 11 possible combinations as the classification 

features. The experiment found that reflectance responses for band Red and NIR are the most distinctive trait of a material type and 

thus sufficient for material identification. We minimized the number of spectral responses used in material identification down to two 

bands, which can help the data collection and processing of material identification easier, cheaper, and less time-cost. Our experiment 

yields overall accuracy of 0.9959, with a computational time of 19.72 seconds.  
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I. INTRODUCTION

Land monitoring is greatly supported by remote sensing 

and GIS technology. Both remote sensing and GIS have given 

us a better perspective about earth's history [1], [2], land 

changes [3], and urban conditions [4], [5], which are 

necessary for decision making [6]–[8]. Remote sensing data 
that can be used for land monitoring varies in its spectral and 

spatial resolution. Urban monitoring, however, requires high 

spatial resolution, and therefore, airborne data is commonly 

used as the standard data for urban monitoring. Airborne data 

is usually expensive with limited coverage and complex 

analysis [9] and still needs to be backed up by satellite data 

which availability has been increasingly growing and can 

cover both local [10] and global monitoring [11].   

In urban monitoring, one of the important information that 

can be obtained is the type of material used in urban objects. 

They can give great insights into urban conditions such as 

urban building's vulnerability toward disaster [12], potential 

green space [13], regional sustainability [14], and urban 

climate [15]. Many types of research related to urban 

materials have been done before and continue. Building 

surface materials have been identified using hyperspectral 

imagery and many methods, such as normalized difference 

plastic index to identify plastic material in a natural and urban 

environment [16], Build-up Surface Index and Build-up Area 

Extraction Index to detect road surfaces [17], and dual-stage 

convolutional networks to identify road materials [18]. 
Another research has differentiated rooftops from non-

rooftops based on the image's grey level using segmentation, 

SVM classification, and histogram [19]. City mapping has 

also been done using spectroscopy data from EnMAP 

hyperspectral spaceborne imaging [20]. 

Meanwhile, methods commonly used for identification or 

classification are Support Vector Machine (SVM) and 

Random Forest (RF). SVM [21] has been widely used for text 

classification [22], object identification [23], and handwriting 
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recognition [24], as it has an excellent theoretical foundation 

and empirical success. While RF is an ensemble classifier 

based on randomization, it makes predictions by averaging 

over several independent base models [25], [26]. Wainberg 

found no significant difference between the Random forest 

and the SVM method [27]. This shows that there is no 

absolute best machine learning method because it depends on 

each study case. Both SVM and RF can yield high accuracy 

of classification [28], and it comes down to finding the right 

feature to be used in the method to optimize the classification 

process and result. 
In material identification, the distinctive feature that can be 

used to differentiate a material surface from one another is its 

absorption features and reflectance [29]. Each material 

produces particular reflectance patterns that play a role as the 

material’s signature [30]. These reflectance characteristics of 

material surfaces can be analyzed using remote sensing 

imagery's spectral bands. A single remote sensing image can 

have many spectral bands taken by many sensors, which is 

redundant computational-wise and expensive in obtaining it 

[31]. This leads to a question of which absorption features are 

significant to different surface materials, especially roofing 
materials, and which absorption features are not discriminant 

enough to be used at classification.  

The imagery in previous studies was used as the dataset is 

commonly hyperspectral images [16]–[20]. The usage of 

those hyperspectral images is expensive and brings much 

complexity to the computation and is redundant as the 

hyperspectral images have hundreds of bands, and not all of 

them are significant for the computation. This paper aims to 

find the most efficient spectral bands that can be used to 

classify materials. We want to find the least number of bands 

sufficient to classify the material, simplify the computation, 
and make obtaining data more efficient while still maintaining 

the accuracy of the classification. This paper proposed a 

machine learning-based identification of roof material types 

by selecting the most optimized features [31] in such a way 

that results in the most accurate roof classification. The 

identification will be made on Pleiades data, multispectral 

satellite imagery with very high spatial resolution. Many 

urban objects that are characteristic of urban structures can be 

recognized in the identified surface material map. To avoid 

the common problem of small buildings and streets being 

overshadowed by trees and other vegetation, we will first 

apply vegetation masking before the classification. Using 
masking is an advantage for reducing the confusion between 

roof and ground materials [32]. The rest of the paper is 

organized as follows. Section 2 describes the materials and 

methods we proposed. Section 3 explains the experiment 

results and discussion. Section 4 concludes the finding of this 

research and future works. 

II. MATERIAL AND METHOD 

A. Material 

The study area is located on the office building of Remote 

Sensing Technology and Data Center, LAPAN, and its 

surrounding area in Pekayon, East Jakarta. The office building 

has various material types forming its rooftops, such as 

aluminum, asbestos, ceramic tiles, concrete, and sand metal 

tiles. This research uses 4-band orthorectified Pleiades 1A 

data, which captured the study area in May 2018. Pleiades 

image that we use in this research has a multispectral product 

that includes four multispectral bands: Blue, Red, Green, and 

Near-Infrared. The product pixel size is 2 m [33]. We chose a 

scene with a requirement of 0% for cloud cover and less than 

20% for viewing angle. A quick look at the data is shown in 

Figure 1. 

B. Method 

Our proposed method consists of three stages: the initial, 

implementation, and final stages. The initial stage is where the 

data is prepared. The preparation is done by applying the pan-

sharpening method to the Pleiades imagery data. Pan 

sharpening [34] is a method to increase an image's spatial 

resolution employing resampling. We use Ehlers's method [35] 

to increase the data's spatial resolution from 2m to 50cm. 

The implementation step is where we process the data for 

classification, which consists of five steps. The first step is 

applying vegetation masking to remove vegetation such as 

trees and shrubs from the data. This step is necessary to 
prevent the vegetation's spectral responses from influencing 

the classification of buildings and other urban objects. The 

masking method used in this research is a threshold method 

based on the normalized difference vegetation index (NDVI). 

We calculate the NDVI value of each data pixel to separate 

the vegetation from the urban objects. The higher an NDVI 

value of a pixel, the higher probability of said pixel is 

representing vegetation. We use trial and error to determine 

the threshold value for NDVI that separates the vegetation and 

non-vegetation. 

 

 
Fig. 1 Multispectral data from Pleiades satellite for the Remote Sensing 

Technology and Data Center Office and the roof material in the existing 

housing in the Pekayon district around the office 

 
The second step is obtaining the training data used in 

classification using the cluster sampling method [36].  We 

randomly choose five clusters from the dataset based on their 

materials and do a systematic sampling for each cluster to 

obtain the pixels used as the training data. We select five 
clusters of pixels representing aluminum, asbestos, ceramic 

tiles, concrete, and sand metal tiles. 

The third step is extracting features from the training data 

by converting the digital values of pixels in each band into 

reflectance values. The reflectance value of each pixel of the 

data can be calculated by considering the digital number of 

each pixel, the radiometric gain value of the image, and the 
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sun elevation angle. Those values are retrieved from the 

image and the image’s metadata. The equation we used to 

obtain the reflectance values is referred to Astrium [37]. Since 

Pleiades imagery is multispectral with red, green, blue, and 

NIR bands, we will have four spectral responses for every 

material we classify. 

The fourth step is grouping the four bands of the Pleiades 

dataset, based on Li [31], which has made the feature selection 

by grouping all the bands based on their spectral range. We 

combined every pair, yielding in 11 combinations, which are 

Blue-NIR, Blue-Red, Blue-Green, Red-NIR, Red-Green, 
Green-NIR, Red-Green-Blue, Red-Green-NIR, Red-Blue-

NIR, Green-Blue-NIR, and Red-Green-Blue-NIR. 

After obtaining the features, the fifth step is developing the 

classification model using Random Forest (RF) method. We 

choose RF as the classification method as pointed out by [38] 

that RF is more fitted and reliable for practical and 

complicated applications. The process is run on R, where we 

set the number of trees n = 14, and training data 70% of total 

data. First, we will conduct training to find the classification 

model and then use the classification model to classify the rest 

of the data, producing five classes of materials, namely 
aluminum, asbestos, ceramic tiles, concrete, and sand metal 

tiles. 

Finally, the last stage is evaluation, in which we compare 

and evaluate the classification results to find the most efficient 

feature. The parameters used for evaluations are classification 

accuracy and computational time. The flowchart of the 

proposed method can be seen in Figure 2. 

  

 
Fig. 2 Flowchart of the proposed method 

III. RESULTS AND DISCUSSION 

For the initial stage, we did a pan sharpening using Ehlers 

method and Ermapper software. This process increased the 

data's spatial resolution from 2m to 50cm. We used the NDVI 

threshold through several trials for the masking before 

obtaining a fixed value of 0.3 as the threshold. It means that 

pixels with NDVI value 0.3 and above are considered 

vegetations and therefore removed from the data, leaving only 

the urban objects that will be classified. The urban-only, pan-

sharpened data can be seen in Figure 3 and Figure 4. 

 
Fig. 3 NDVI value of each pixel in which value more than 0.3 considered 

vegetation 

 

 

Fig. 4 Vegetation masking result 

 

We then selected the training data from the masked image. 

We randomly chose five clusters and systematically selected 

pixels of the same distances from each cluster. The five 

clusters represent ceramic tile, concrete, asbestos, sand metal 

tile, and aluminum. We gained 734 data points for each type 

of aluminum, asbestos, ceramic tiles, concrete, and metal sand 

tiles. The data points consist of 114 data points for aluminum, 

119 data points for asbestos, 143 data points for ceramic tile, 

42 data points for concrete, and 316 data points for sand metal 
tile. 

After collecting the training data, we converted the pixels’ 

value of all the data points from those training data into the 

reflectance value. From this step, we obtained the average 

value of each material’s spectral responses toward every band 

in our dataset, namely the Blue, Green, Red, and NIR band. 

Then, we implemented the classification. We used a machine 

learning approach with the Random Forest method. From our 

previous 734 data sampling, we use 70% of them as the 

training data and the rest as the test data. The classification 

process was conducted eleven times with different feature 

selection in each process. 

TABLE I 

SPECTRAL RESPONSES FOR EACH MATERIAL 

Material Types Blue Green Red NIR 

Aluminum roof 0.3223559 0.2991867 0.2764054 0.3340441 

Asbestos 0.2340635 0.2042975 0.1835748 0.2377383 

Ceramic tile 0.2154938 0.1842477 0.1927679 0.2600768 

Concrete 0.3174365 0.2753749 0.2531401 0.3905671 

Sand metal tile 0.2204477 0.1872178 0.1677609 0.2228527 
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First, we used all the Pleiades bands as features for the RF 

method. We obtained model accuracy 0.9746468, overall 

accuracy 1, Kappa value 0.9648743, and computational time 

35.63 seconds for one data. In the second experiment, we 

lessened the number of bands into three. There are four 

combinations of bands which are Red-Green-Blue, Red-

Green-NIR, Red-Blue-NIR, and Green-Blue-NIR. Each 

combination is used as a feature in the classification. The 

accuracy, Kappa value, and time consumption for each model 

are shown in Table 2.  

TABLE II 
ACCURACY COMPARISON OF 3-BAND COMBINATIONS 

 

From Table 2 we can conclude that the best feature among 

the 3-band combinations is the Red-Green-NIR combination 

with model accuracy 0.971148, overall accuracy 1, and 

computational time 25.89 seconds. The accuracy of the model 

is only 0.36% lower than the all-band feature model, and the 

overall accuracy does not decrease. Meanwhile, the 
computational time is shorter by 27.37%. Finally, the third 

experiment, we again lessened the band number into two and 

implemented the classification six times for every 2-band 

combination, namely Blue-NIR, Blue-Red, Blue-Green, Red-

NIR, Red-Green, and Green-NIR. The result is shown in 

Table 3. The best accuracy is obtained by the classifier with 

the Red-NIR feature, which is 0.9361645 for the model 

accuracy and 0.9959 for the overall accuracy, with 

computational time 19.72 seconds.  

TABLE III 

ACCURACY COMPARISON OF 2-BAND COMBINATIONS 

 

The computational time for this model is significantly 

shorter than the best 3-band featured model by 23.83% and 

the all-band featured model by 44.65%. Accuracy-wise, the 
model accuracy for this classifier with the Red-NIR feature is 

lower than the one with the Red-Green-NIR feature by 3.60% 

and the one with the all-band feature by 3.95%. As for the 

overall accuracy, it decreases slightly by 0.41%. The 

classified image resulted from the Red-NIR featured model is 

shown in Figure 5. 
 

 
Fig. 5 Classification result for Red-NIR band featured model 

 

The experiment results show that the classifier with the 

Red-NIR band combination as its feature gives the best 

efficiency. The computational time is the shortest among 

other features, and the number of bands can be minimized into 

two bands only, which makes it easier and cheaper to collect 

spectral responses data. Moreover, although the accuracy is 

decreasing, the difference between the Red-NIR’s model 

accuracy and the highest model accuracy is under 4% while 
the difference in overall accuracy is under 1%, which is still 

acceptable. It can also be seen from Table 2 that the Blue-

Green combination yields the lowest accuracy, which further 

supports the finding that the Red and NIR spectral responses 

are the most distinguishable trait of material types and those 

two only suffice to differentiate material types from one 

another. 

IV. CONCLUSIONS 

This research found that spectral responses for band Red 

and NIR are the most distinguishable trait of a material type 

and thus sufficient for material identification. We minimized 

the number of spectral responses used in material 

identification down to two bands, which can help data 

collection in future material identification easier and cheaper. 

We applied our model to classify the roof material of the 

Remote Sensing Technology and Data Center Office and the 

roof material in the existing housing in the Pekayon district 

around the office. Using the Random Forest method feature 

selection from the Red-NIR band, we obtained model 
accuracy 0.9361645 and overall accuracy 0.9959 with a 

computational time 19.72 seconds. This computational time 

is significantly shorter than the best 3-band featured model by 

23.83% and the all-band featured model by 44.65%. Although 

the accuracy also decreases, the difference between the Red-

NIR’s model accuracy and the highest model accuracy is 

under 4%, while the difference in overall accuracy is under 

1%, which is still acceptable. 
For future work, we plan to add a specular correction to the 

data before the processing and identification to increase the 

identification accuracy. We also plan to fuse high-resolution 
data with medium resolution data to investigate the effect of 

higher infrared wavelengths on the identification within the 

same resolution. 
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