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Abstract— We studied the relationship of Quick Response (QR) code identification system performances with illuminance on the QR 

code, exposure time of the camera, and relative moving speed. We studied the root causes of low identification performance problems 

on moving QR code as well. A physical experiment method study on a minimal working example of a real-time moving QR codes 

identification system with ZBar QR codes identification algorithm has done, and then the results were quantitatively and qualitatively 

analyzed. The values of illuminance on the QR code, exposure time of the camera, and relative moving speed used in the experiments 

were 140 lux - 640 lux, 0.7 ms - 22.2 ms, and 0 m/s - 2.5 m/s, respectively. Our data boundaries of the experiment results regarding 

exposure and motion blur (mediator variables) were respectively 0.108 lux·s - 12.476 lux·s and 0.0 pixel - 30.4 pixel. We identified 

physical phenomena in imaging, exposure and motion blur, could make the QR code image too dark/too bright and motion blurred. 

Such phenomena could make the QR code hard to identify and being the root cause of the problems. Our quantitative study proved 

that identification system performance is affected by illuminance, exposure time, and relative moving speed. Finally, we proposed a 

novel solution to overcome the problems by using a numerical method to compute the optimal illuminance on the QR code and the 

camera's exposure time for the given relative moving speed of the system. 
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I. INTRODUCTION

Quick Response (QR) codes are widely used by various 

applications which require reliable QR codes identification, 

such as mobile robot localization and navigation [1]–[4], 

transportation platform localization and navigation [5], [6], 

augmented reality [7], smart wheelchair localization and 

navigation [8], real-time objects identification for the visually 

impaired [9], structural displacement measurement [10], 

conveyer belt in the agro-food supply chain [11], [12], 

warehouse management [13], autonomous library robot [14], 
indoor parking vehicle-tracking system [15], and high-speed 

moving cars identification [16]. Many researchers developed 

novel QR codes identification algorithms and QR codes 

identification algorithms enhancements to achieve maximum 

identification performance. 

For example, Brown [17] developed an open-source library 

named ZBar to identify various barcodes symbols, including 

QR codes, by making linear scans pass over an image. 

Szentandrási et al. [18] implemented a Histogram of 

Gradients to locate QR codes from an image, identifying 
success rate at about 73.3%, in upright QR codes, rotated QR 

codes, and irregular illumination conditions. Szentandrási et 

al. [18] also reported that ZBar had an average identification 

success rate of about 78.3% for the same conditions. 

Liu et al. [19] integrated global thresholding with local 

thresholding in an image binarization process. The 

recognition rate in normal lighting conditions was 97.5%, 

highlighted spot and background noise was 95%, low contrast 

or non-homogeneous lighting was 91%, and damaged bar 

code was 87%. He and Yang [20] proposed adaptive local 

binarization based on sets of threshold rules and adaptive 

window size for different illumination conditions to improve 
ZBar recognition rate on non-homogeneous illumination from 

94.41% to 95.65%. Hogpracha and Vongpradhip [16] used 

the contrast limited adaptive histogram equalization before 

converting a binary image for moving QR codes identification. 

The identification success rates of QR codes attached on 

moving cars were about 100% for under 8.33 m/s, 80% at 9.72 
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m/s, and 60% at 11.11 m/s. Pu et al. [21] proposed a 

Convolutional Neural Network-based framework for image 

pre-processing on QR codes identification using ZBar to 

recover blurry QR codes caused by out-of-focus blur and 

motion blur. Yu [22] proposed a method to do image 

deblurring using fractional differential order. Both Pu et al. 

[21] and Yu [23] were able to reach the QR codes recognition 

rate >90%. 

QR codes identification algorithms and its enhancements 

are widely developed to achieve maximum identification 

performance and reliable identification systems. The root 
causes of low identification performances were still unclear. 

Jahr [24] stated that lighting in machine vision has many 

parameters and complex relationships that affect image 

processing algorithms' performance in general. Jahr [24] used 

illuminance as a quantitative lighting measurement on 

reflective objects. Ye et al. [10] and Zhang et al. [1] adjusted 

the camera's exposure time/shutter speed to adapt to the 

lighting condition, but this is not yet explained or analyzed 

quantitatively. Qian et al. [11] analyzed the relationship of 

QR code readability with reading distance, code size, coded 

characters, and moving speed factors, but lighting and 
imaging device factors were not discussed. 

This study examined the relationship between QR code 

identification system performances and illuminance E on the 

QR code, camera exposure time t, and relative moving speed 

v. A study case on a minimal working example of real-time 

moving QR codes identification system with ZBar algorithm 

has done. The results were quantitatively and qualitatively 

analyzed. Recall r and precision p used as the QR codes 

identification system [25]. The root causes of low 

identification system performance problems on moving QR 

code were studied as well. We identified that physical 
phenomena in imaging (i.e., exposure and motion blur) could 

make the QR code image too dark/too bright and motion 

blurred. Such phenomena could make the QR code hard to 

identify and being the root cause of the problems. Our study 

quantitatively proved that varying E, t, and v affects the 

identification system performances. Finally, we propose a 

novel solution to overcome the problems by using a numerical 

method to compute the optimal E on the QR code and t of the 

camera for a given v of the system. 

II. MATERIAL AND METHOD 

A. Related Works 

 
Fig. 1  QR code images respectively at illuminance of 600 lux and 75 lux [10] 
 

Ye et al. [10] investigated the error sources on the 

measurement accuracy on a non-contact vision-based 

structural displacement measurement system. The purpose of 

the investigation was to achieve accurate and reliable 

measurement by making effective measures against various 

error sources: environmental illumination, the elevation angle 

of the digital camera, and the vapor surrounding the targets. 

The environmental illumination was quantitatively measured 

using illuminance on the object. However, the measurement 

results were only descriptively analyzed. The QR codes were 

grayish, and the region around the QR codes was bright in the 

image at the illuminance of 600 lux. The QR codes were stand 

out from the surrounding environment, and the QR codes 

were successfully detected. At the illuminance of 75 lux, the 

QR codes were tough to be detected because the QR codes 
and the region around them were almost integrated. Fig. 1 

shows both of the images at the illuminance of 600 lux and 75 

lux. The investigation result concluded that the illumination 

on the object affected the resulting images and affected the 

success of QR codes detection. 

Zhang et al. [1] adjusted the camera's exposure time to 

adapt to the lighting condition. However, it was unclear how 

Zhang et al. [1] set the camera's exposure time and how much 

the illuminance for the object needed. Hogpracha and 

Vongpradhip [16] showed that moving speed affected the QR 

code identification success rate, but it still has not yet been 
explained why and how it happened. 

B. Methodology 

We used the experimental method to investigate the 

system's identification performances against various 

illuminance, exposure time, and moving speeds. A system 

identified QR codes, and then the results were saved to 

estimate the quantitative identification performance using 

recall and precision. The relationships of recall and precision 

with illuminance, exposure time, and moving speed were 
searched using regression. Illuminance and exposure time of 

the identification system relative to QR codes moving speeds 

optimized using numerical method. We did our research in 

several stages, as described in Fig. 2. 

 

 
Fig. 2  Stages of our research 

1)  Moving QR Codes Identification System:  The 
identification system consisted of an electronic global shutter 

camera, a camera lens, homogeneous light sources, a 

processing device/personal computer (PC), and software with 

a QR code identification algorithm. An electronic global 

shutter camera was used instead of an electronic rolling 

shutter camera; because of the scanning on the electronic 

rolling shutter imaging sensor, Mattfeldt [26] might cause the 

object to be skewed when the object is moving fast. The 

camera had manual control of exposure time, gain, and white 

balance. The manual control of gain was used to ensure that 

the gain was always at the default value and remain 
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unchanged during camera usage. The white balance of the 

image should be adjusted so that the white objects appeared 

white on the resulting image. Incorrect setting of the white 

balance may cause color inconsistencies in the image [27]. 

We determined the size of the QR code and the focal length 

of the camera lens by taking a preliminary test. The purpose 

of the preliminary test was to assure that the system could 

identify the QR code in a static condition and dob at 1.5 m. The 

condition was defined as static v = 0 m/s, and the resulting 

image had qualitatively adequate lighting. The definition of 

qualitatively adequate lighting was that humans could see the 
QR codes clearly in the image. In our experiment, 

qualitatively adequate lighting was achieved when the 

illuminance on the QR codes was 40.5 lux, and the camera's 

exposure time was 12.5 ms. The flens determine the imaging 

system's angle of view (AOV) and the field of view (FOV). 

The AOV could be calculated with[28]  
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�. (1) 

To accurately determines the FOV of the imaging system, 

we directly measured the side length of a flat object plane 

captured by the imaging system using a ruler. The camera had 

placed at the distance dob from the object plane before the 

FOV measured. The dob on FOV measurement was the same 

as the distance of the camera to the QR codes. 

Lighting technique of partial bright field incident light, Jahr 

[24] used to illuminate the QR codes. Homogeneous or 

defined, known and repeatable brightness profile was one of 
the requirements for the lighting in machine vision [24], so 

we preferred to follow it in our experiment and recommend it 

for other machine vision applications. A lux light meter used 

to measure the illuminance at the QR code surface. If the 

distance between the light sources and the QR codes were 

constant, then the illuminance could be measured only once 

as long as the lighting did not decay significantly within a 

specified period (known and repeatable brightness profile 

criterion). 

This paper only discussed reflecting/incident light QR 

codes (e.g., QR codes printed on a surface). 

Glowing/backlight QR codes (e.g., QR codes displayed on a 
liquid crystal display) were not discussed and are irrelevant to 

this paper's discussion. The QR code should contain the data 

to be identified by the QR codes identification system. For a 

fair identification performance result, the rotation of the QR 

codes should be considered [18]. An assumption is that QR 

codes have uniformly distributed random rotations from 0° to 

360° applied. A speed measurement device was used to 

measure the relative moving speed if there was relative 

movement between QR codes and the identification system, 

whether the QR codes itself were moving or the identification 

system was moving. If there was no relative movement, then 

it could be assumed that �it was 0 m/s. 

2)  System performance analysis: Many performance 

metrics were available for evaluating QR codes identification 

systems [25]. The QR codes identification results counted as 

one of four categories. If a QR code is present and correctly 

identified, then it counted as TP. If a QR code is present and 

the identification failed, then it counted as FN. If no QR code, 

but the identification result is giving that a QR code present 

(i.e., false alarm), it counted as FP. If no QR code and the 

identification result give no QR code present, it counted as 

TN. TN was irrelevant for QR codes identification systems 

with QR codes area and position estimations within the image 

frame. Every single pixel that is no QR code and not identified 

as QR code was a TN so that the TN count would be incorrect. 

Recall is defined by Godil et al [25] as follows: 

 � � ��
����� (2) 

The recall is the fraction of correctly detected items among 

all the items that should be detected. Precision is defined by 

Godil et al. [25] as  

 � � ��
����� (3) 

Precision is the fraction of detected items that are correct. 

Recall and precision are used as performance metrics for 

evaluating QR codes identification systems. 

There was illuminance, exposure time, and moving speed 

as independent variables, while recall and precision were 

dependent variables. The relationship of recall with 
independent variables and precision with independent 

variables were searched using regression analysis. The 

independent variables were approached by using exposure 

and motion blur as mediator variables based on Jahr [24] that 

simplified the regression analysis and explained the physical 

phenomena during QR codes identification with various 

values of independent variables. 

 

 
Fig. 3  Example images from the experiment at v=0 m/s with proper (E=294 

lux, t=5.6 ms, recall=76.05%), over-exposed (E=556 lux, t=22.2 ms, 

recall=0.00%), and under-exposed (E=165 lux, t=0.7 ms, recall=0.00%) 

exposure 
 

Exposure is defined by Jahr [24] as follows: 

 � � � ⋅ 
. (4) 

In general, the main goal was to produce images with 

sufficient contrast (light and dark), not over-exposed and not 

under-exposed, as illustrated in Fig. 3. QR codes 

identification could fail if the image's QR codes did not have 

sufficient contrast because the image was over-exposed or 

under-exposed (as seen in Fig. 3). 
Motion blur is defined by Jahr [24] as  

 !" � � ⋅ 
 ⋅ #$
�%&$

. (5) 

In general, the main goal was to produce images with the 

lowest motion blur. However, since relative moving speed is 
a requirement in many applications, the relative moving speed 

could not decrease the motion blur. Decreasing exposure time 

could reduce motion blur, but it would change the exposure. 

Increasing the illuminance could compensate for the 

decrement of the exposure time so that the exposure did not 

change. 

Maximum recall and precision hypothetically expected if 

exposure and motion blur were at an optimum value. If the 
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relationships between dependent variables and mediator 

variables are already known, then the relationships between 

dependent variables and independent variables could be easily 

obtained by substitutions with Equation 4 and Equation 5. The 

optimization process could use the known relationship of QR 

codes identification performance with illuminance, exposure 

time, and moving speed. 

 

 
Fig. 4  Illuminance and exposure time optimization on QR codes 

identification systems 

 

3)  Illuminance and exposure time optimization: We varied 

exposure time and illuminance to calculate a set of various 

recall and precision of the QR codes identification systems for 

a particular moving speed. Our calculations were valid only 

within our data boundaries of the experiment results in terms 

of exposure and motion blur. The optimum illuminance and 
exposure time were obtained from the set with recall and 

precision that fulfilling the required minimum values. Fig. 4 

shows the flowchart of illuminance and exposure time 

optimization on QR codes identification systems to achieve 

maximum identification systems performance. The relative 

moving speed of the system against the QR codes should be 

specified, and it could be a single value or a range of values. 

The moving direction should be specified first to specify the 

camera sensor's pixel count in the moving direction of the 

objects nm and the FOV in the moving direction of the objects 

FOVm. Minimum exposure time tmin, maximum exposure time 

tmax, and the step of exposure time tstep known from the camera 
specifications. 

The desired chosen performance metric, which was 

relatively lower from the maximum possible chosen 

performance metric (i.e., rtol or ptol), was calculated as the 

desired chosen performance metric (i.e., rdes or pdes) using 

 �'(� � �)1 + �,-./012 (6) 

or 

 �'(� � �)1 + �,-./012 (7) 

where rmax and pmax were the maximum possible values of 

recall and precision. The desired performance metric was 

specified as relative values to avoid specifying more than the 

maximum possible value. Values of rtol or ptol given with low 
value (e.g., 0.1%) for a result close to the maximum possible 

value of the performance metric. However, it should not 0 to 

avoid excessive illuminance requirements with an 

insignificant increase in the performance metric. If the 

intention is for drawing charts, we used higher values (e.g., 

5%) of rtol or ptol to wider the charts coverage range. 

The rmax or pmax obtained from the maximum point of the 

regression equations of the performance metric (i.e., recall or 

precision) against H at no motion blur (MB = 0 pixel), i.e., v 

= 0 m/s. The upper boundary of the exposure (Hmax) was the 

value of H where the rmax or pmax located. The upper boundary 
of the motion blur (MBmax) was obtained using the inverse of 

the regression equations of the performance metric (i.e., recall 

or precision) against exposure and motion blur, with Hmax 

used for the value of the exposure giving rdes to that inverse. 

The t at MBmax calculated as follows. If the t at MBmax is 

less than specified tmax, then the value of the tmax was replaced 

with the value of the t at MBmax. The purpose of this step was 

to reduce sets of unnecessary E and t values with the low value 

of the performance metric (i.e., recall or precision) because of 

high t value (hence MB was greater than MBmax). The lower 

boundary of the exposure (Hmin) obtained by using the inverse 

of the regression equations of the performance metric (i.e., 
recall or precision) against exposure with no motion blur, then 

giving rdes to that inverse. Hmin and Hmax could be given to 

Equation 4 so that the lower and upper boundary of the 

illuminance (Emin and Emax) were obtained, respectively. 

We generated sets of E and t values for given v within 

boundaries that had already been obtained before. The recall 

and precision value for each of the generated E and t value set 

calculated using the regression equation of the recall and 

precision against E, t, and v. Charts could be drawn from the 

generated E and t values for given v with its recall and 

precision values set. 
 

 
Fig. 5  Mobile robot and QR codes used in the system proposed by [1], 

respectively 
 

Sets with recall or precision higher than the desired ones 

were selected. By now, the sets may contain several sets that 
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had nearly the same performance metric value that was 

focused on being maximized but with different E and t values. 

Therefore, sets with the lowest E were selected to reduce the 

required illuminance (hence the required electric power). The 

set with the highest focused performance metric value within 

the lowest E is then selected, so that set with the optimum E 

and t for a given v with maximum QR codes identification 

performance obtained. The obtained set of values used and 

suggested for designing the QR codes identification system. 

4)  A study case on the ZBar algorithm: The study case of 

the QR codes identification system is done by approaching the 
localization and navigation system using the QR code for a 

mobile robot in an indoor environment. We used the system 

proposed by Zhang et al. [1] (as seen in Fig. 5) using the ZBar 

algorithm for QR code identification as the reference for our 

approach, so we tried to mimic their QR code identification 

system configuration. The mobile robot is considered as a 

platform that made the QR codes identifications system move 

with measurable constant speeds. So, the mobile robot could 

be replaced with any moving object (or even the QR codes is 

moving instead) as long as the moving speed could be 

measured and constant. 

The QR codes version 2 used for the experiment in this 

paper contained 12 alphanumeric characters data with the 

template “(NN, X.X,Y.Y)” (without quotation marks). "NN" 

was two digits QR code numbering, "X.X" and "Y. Y" were 

decimal coordinates within the x-axis and the y-axis. The 

error correction level set to the highest available level, i.e., 

level H (~30% per symbol area) [29]. The QR codes were 

placed at the ceiling of the 2nd-floor corridor of the 

Department of Nuclear Engineering and Engineering Physics, 

Universitas Gadjah Mada (DTNTF FT-UGM) building, as 

seen in Fig. 6.  

 

 

Fig. 6   QR codes placement layout at the ceiling of 2nd-floor corridor DTNTF FT-UGM building  

 

The QR codes were printed in 12 cm × 12 cm size each and 

spaced 0.5 m from each other. The purpose of the rotations of 

QR codes placement was to assume that the camera could 

capture any QR code image with any rotation (0°–360°); each 
QR code rotation has the same probability. 

 

 
Fig. 7  Platform mobile robot prototype 

 
Fig. 8  The result of speed measurement device calibration 

 

In this paper, a trolley-like made of thick slotted angle bars 

and rubber wheels (as shown in Fig. 7) used, performing as 

the platform mobile robot prototype. A reflective infrared 

transceiver CNY 70 module, a reflective printed incremental 

rotary encoder, an Arduino Leonardo, and a Liquid Crystal 

Display (LCD) 16×2 used to construct a speed measurement 

device. We used the period measurement method for speed 

measurement [30]. The device was calibrated with a moving 

speed measurement by measuring QR codes displacements 

within images, as the distances between QR codes were fixed 
and well-known. The prototype moved by driving it manually 

with constant walking speed, keeping the moving speed 

shown in the LCD as near as possible to the target moving 

speed. The moving speed was real-time measured and 

recorded with a minimum sampling rate of 28.7 Hz at 0.25 

m/s, and this rate was increasing as the moving speed 

increases. The device calibration result (as seen in Fig. 8) 
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shows that each average moving speed has a relatively small 

standard deviation to the average value, showing that the 

prototype moved with constant speed. The measurement error 

was getting higher as the moving speed was getting higher; 

this was true because the device's measurement method was 

only optimized for low-speed measurement [30]. Higher 

prototype moving speed also getting more challenging to 

drive manually at a constant speed, so the moving speed for 

the experiment in this paper was limited up to 2.5 m/s. 

 

 
Fig. 9  The LEDs used as the light sources 

 

Our imaging system configuration consisted of a high 

frame rate oCam 1CGN-U electronic global shutter camera, 

and a camera lens. The camera placed on the prototype with a 

distance from the ceiling dob of 1.5 m. The camera had an 

AR0134CS CMOS 1/3 inch format imaging sensor with an 

image resolution of 1280 pixels × 960 pixels, having sdiagonal 

sensor of 6.0 mm, horizontal shorizontal sensor of 4.8 mm, and svertical 

sensor of 3.6 mm. The red white balance (WB) of the camera 
set to 133 and blue WB set to 125. The gain control set to 

manual with a default value of 64. The camera had a minimum 

exposure time tmin of 0.1 ms, and the exposure time step tstep 

was 0.1 ms. The maximum exposure time tmax was the inverse 

of the camera's maximum frame rate (i.e., 45 frames per 

second) so that it was 22.2 ms. The camera's maximum frame 

rate limited by the pixel clock rate and related circuitry in the 

camera and how fast it can put images onto a camera bus [27]. 

The frame rate and the camera's exposure time had separate 

controls, so it was possible to set the exposure time, e.g., to 

5.6 ms, while maintaining the frame rate at 45 frames per 
second. Since the frame rate was not related to the exposure 

time and was only related to the data transfer rate, the frame 

rate had no relation with QR code identification performance 

(recall in this case). Frame rate had the only relation with 

images sampling rate, i.e., 45 images per second. 

A camera lens with focal length flens of 8 mm and an 

aperture number f/1.2 was used for the camera, having 

FOVdiagonal of 1.18 m, FOVhorizontal of 0.95 m, and FOVvertical of 

0.70 m. The ratio between the side length of the QR code and 

the FOVvertical was 0.17143. We did not address the light 

sensitivity of our imaging system configuration since we did 
not have access to the measurement device. The values in our 

results are only valid for the same imaging system 

configuration, but our approach is general for all imaging 

system configurations. 

There were four units of zoom LED XM-L2 used as the 

light sources, placed at the side of the imaging device at 6.5 

cm, as seen in Fig. 9. The light sources had an angular distance 

to the imaging device at about 4.96°. The light sources had 

2.2 m diameter circle lighting area. So, we had partially 

directed bright field incident light as the lighting technique. 

The experiments had been done in night conditions so that the 

illuminance on the QR codes from the environment was very 

low, only about 2–3 lux. A standard lux light meter Extech 

401025 was used to measure the illuminances. Table 1 shows 

illuminance on each QR code where the light sources were at 

the center between four QR codes (two rows and two columns) 

and the light sources turned on alternately. Each LED had a 
relatively small illuminance difference on each QR code 

position. Each LED had a relatively small illuminance 

standard deviation (S.D.) to its average. So, each LED 

assumed as a homogeneous light source. Batteries supplied 

the powers for the LEDs, and their illuminances were 

decaying over turned-on time. So, an illuminance 

measurement from some turned-on LEDs (depending on 

experiment set) performed for each experiment beginning. 

TABLE I 

LEDS HOMOGENEITY TEST 

LED Illuminance (lux) on 

QR Code No. 

Average S.D. 

1 20 2 21 

Back-left 144 139 137 145 141.25 3.86 
Back-right 142 150 135 145 143.00 6.27 
Front-left 148 145 160 159 153.00 7.62 
Front-right 132 133 152 150 141.75 10.72 

 
A laptop (PC) with Intel Core i7-2640QM processor, an 8 

GB RAM, and a 5400-rpm hard disk drive (HDD) used for 

the real-time QR codes identification system. The QR codes 

identification software made using C++ language, and 

OpenCV with the QR codes identification algorithm was 

ZBar open-source library. The software functions were: to 

capture images from the camera, to read the moving speed 

measurement device, to receive inputs (i.e., measured 

illuminance, target moving speed, and exposure time setting), 

to get a real-time QR codes identification, to save 

identification results as an image format (JPG), and to save all 

parameters value with the text version of identification results 
as comma-separated value (CSV) text format. The average 

overall required time to identify QR codes within an image 

was 62.02±4.96 ms, so that the QR codes' identification 

frequency was about 16.12 images per second.  

III. RESULTS AND DISCUSSION 

A. The system's performance 

All the independent variables were varied for each 

experiment set in this paper. The exposure time values were 
22.2 ms, 10.5 ms, 5.6 ms, 2.7 ms, 1.3 ms, and 0.7 ms. For the 

desired moving speed, the values were 0 m/s, 0.25 m/s, 0.5 

m/s, 0.75 m/s, 1 m/s, 1.5 m/s, 2 m/s, and 2.5 m/s on vertical 

direction of the imaging system. The values for the 

illuminance varied by changing the amount of the turned-on 

LEDs, i.e., 1 LED, 2 LEDs, 3 LEDs, and 4 LEDs with 

illuminance value at about 140 lux - 200 lux, 260 lux - 340 

lux, 370 lux - 500 lux, and 520 lux - 640 lux, respectively. 

The data acquisition for each set of the experiment done 

three times to ensure the validity of the data; all three data 
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acquisitions used and shown separately. We were not doing 

higher moving speed experiment sets that had recall precisely 

0 for the same illuminance and exposure time. Such 

experiment sets would have higher motion blurs, and the 

identification performances would not be better. Our data 

boundaries of the experiment results in terms of exposure and 

motion blur (mediator variables) were respectively 0.108 

lux·s - 12.476 lux·s and 0.0 pixel - 30.4 pixel. 

 

 
Fig. 10  Recall of QR codes identification system with ZBar algorithm against 

illuminance, exposure time, and moving speed 
 

 
Fig. 11  Recall of QR codes identification system with ZBar algorithm against 

exposure and motion blur 
 

We compared image format data with the text format data 

to categorize whether a QR code was a TP, an FP, or an FN; 

then, we summed each of them in an experiment set. We 

calculated recall and precision for an experiment set; both 

represent the QR codes identification systems performance. 

We got the system's precision for each experiment set was 

always 100% because there was no FP at all. That was true 

because the QR codes were structured well enough, and the 
algorithm itself was optimized to suppress FP/false alarms, as 

stated in the comments of ZBar source codes. Fig. 10 shows 

recall of the system against illuminance, exposure time, and 

moving speed. 

The recalls for certain moving speeds were only high if the 

illuminance and exposure time is at optimum value. We 

introduced mediator variables: exposure and motion blur to 

better explain the physical phenomena affecting the systems 

recall. The QR codes identification systems performance (as 

seen in Fig. 11) was deficient if the exposure value was too 

low or too high. That was true because the contrast of the QR 

codes reduced when the images were under-exposed or over-

exposed so that the QR codes identification failed. The QR 

codes also failed to be identified if the motion blur was too 

high. That was true because the QR codes structure in the 

images was blurred, distorted, and overlapping each other, as 

seen in Fig. 12. 

 

 
Fig. 12  QR code images respectively at exposure value H 2.76, 3.18, 1.05, 

and 2.76 lux·s, motion blur MB 3.8, 3.8, 3.8, and 14.5 pixels, and recall 

63.26%, 54.29%, 31.25%, and 0.61% 
 

 
Fig. 13  Recall of QR codes identification system with ZBar algorithm against 

exposure with no motion blur 
 

The QR codes identification system had a maximum recall 

of 76.05% at an illuminance of 294 lux, an exposure time of 

5.6 lux, and 0 moving speed. The recall was unable to reach 

100% because, in almost all data of the experiment set results, 
QR codes identification failed at rotations of 40°, 50°, 130°, 

140°, 220°, 230°, 310°, and 320°. In general, assume that the 

QR codes with those rotations (8 of 38 rotations) always failed 

to be identified, and the others would always be successfully 

identified in an ideal condition using the ZBar algorithm. The 

recall for that assumption was 78.95%. The maximum recall 

value obtained in the experiments in this paper was very close 

with the ideal maximum recall value of ZBar algorithm, also 

with the identification success rate of about 78.3% in upright 

QR codes, rotated QR codes, and irregular illumination 

conditions reported by Szentandrasi et al. [18]. 
The relationship of the recall of QR codes identification 

system with exposure and motion blur analyzed using non-

linear regression analysis with robust base library on R. The 

optimization only needs data with high recall, so the data used 

in this paper only limited to the range of exposure of 1.0 lux·s 

- 3.5 lux·s and motion blur of 0.0 pixel - 4.0 pixel. The basis 

of the chosen upper boundary value of the exposure was the 

regression modeling of Fig. 13 would discontinue in the range 

between 3.5 lux·s and 4.0 lux·s. So, the upper boundary value 

of the exposure is chosen at 3.5 lux·s. The recall at 3.5 lux·s 

175



was at about 60%. So, the lower boundary value of the 

exposure, the lower and upper boundary values of the motion 

blur chosen at the point near recall of 60%. We used the data 

within that boundary values for the analysis, and we assumed 

that the recall would be lower than 60% outside that boundary 

values. 

 

TABLE II 

EQUATIONS MODELS OF THE NON-LINEAR REGRESSION ANALYSIS OF 

RECALL AGAINST EXPOSURE WITH NO MOTION BLUR AND ITS RELATIVE 

GOODNESS-OF-FIT SCORE 

Name Equation AICc 

Score 

BIC 

Score 

5th order 

polynomials � � 3 45�5
6

578
 

-138.5 -138.0 

6th order 
polynomials � � 3 45�5

9

578
 

-151.7 -152.9 

7th order 

polynomials � � 3 45�5
:

578
 

-146.4 -150.0 

8th order 
polynomials � � 3 45�5

;

578
 

-139.9 -146.9 

Exponential A r = k + (H – 
c) ·  
exp(a + b · H) 

-151.3 -149.2 

Exponential B r = k + (H – c) 

d ·  
exp(a + b · H) 

-167.0 -165.4 

TABLE III 

EQUATIONS MODELS OF THE NON-LINEAR REGRESSION ANALYSIS OF 

RECALL AGAINST MOTION BLUR AT CONSTANT EXPOSURE (1.63±0.03 LUX·S) 

AND ITS RELATIVE GOODNESS-OF-FIT SCORE 

Name Equation AICc 

Score 

BIC 

Score 

2nd order 
polynomials � � 3 45!"5

�

578
 

-15.9 -36.1 

3rd order 
polynomials � � 3 45!"5

<

578
 

20.6 -39.6 

Gaussian-
like 

r = x · �=>?@

�A@ � -10.5 -18.7 

Exponential r = w – exp(x + y · MB) -30.1 -50.3 

 

Predicting the regression equation model that could fit the 

data of recall against exposure and motion blur directly was 

hard. Our strategy was breaking down the regression analysis 

into three steps. The first and second steps were performing a 

regression analysis of recall against exposure with no motion 

blur and performing a regression analysis of recall against 

motion blur with a constant exposure value on the highest 
recall value (i.e., 1.63±0.03 lux·s). Both were only needed to 

find the equation model, which was the best to construct the 

non-linear regression equation of recall against exposure and 

motion blur. AICc (Akaike's Information Criterion for small 

samples) and BIC (Bayesian Information Criterion) Dziak et 

al. [31] used as the criteria to choose which equation model 

was having the best goodness-of-fit against the others, the 

lower of the value of them was the better. The equations 

modeled using polynomials and exponentials equation 

models. Table 2 showing that the best equation model that fits 

the recall against exposure with no motion blur data was 

“Exponential B”. The best equation model that fits the recall 

against motion blur with a constant exposure on the highest 

recall value (i.e., 1.63±0.03 lux·s) data was “Exponential”, as 

seen in Table 3.  

 

TABLE IV 

EQUATIONS MODELS OF THE NON-LINEAR REGRESSION ANALYSIS OF 

RECALL AGAINST EXPOSURE AND MOTION BLUR 

Name Equation AICc 

Score 

BIC 

Score 

Fit 0 r = o + (H – c)d ·  
exp(a + b · H) –  
exp(x + y · MB) 

842.0 854.4 

Fit 1 r = (k + (H – c)d · exp(a + 
b · H)) ·  
(w – exp(x + y · MB)) 

778.5 791.6 

Fit 2 r = o – k · exp(x + y · MB)  
+ w · (H – c)d ·  
exp(a + b · H + y · MB) 

65.2 79.3 

Fit 3 r = o – k · exp(x + y · MB)  
– (H – c)d ·  
exp(n + b · H + y · MB) 

447.0 460.1 

Fit 4 R = o + w · (H – c)d ·  
exp(a + b · H) – (H – c)d ·  
exp(n + b · H + y · MB) 

6.0 19.1 

Fit 5 r = o – (H – c)d ·  
exp(n + b · H + y · MB) 

482.6 494.2 

TABLE V 

REGRESSION CONSTANTS OF REGRESSION EQUATION “FIT 4” 

Weight Value 

a 4.18046 
b -3.65950 

c 1.05862 
d 2.27629 
n -3.27108 
o 0.60108 
w 3.08732 
y 2.18807 

 

 
Fig. 14  Residual plot and normal residual plot of regression result “Fit 4”, 

respectively 
 

The last step was performing a regression analysis of recall 

against exposure and motion blur. We obtained the equation 
model by conducting binary operations (e.g., summation, 

multiply) between the equation models found on the first and 

second steps. Table 4 showed the equation "Fit 4" much better 

than the others. AICc and BIC are relative goodness-of-fit 

criteria so that they could not be used to measure whether the 

regression result has absolute goodness-of-fit. We assumed 

that the residual of the regression was normally distributed, 

homoscedastic, and unbiased. A normal residual plot used to 

check whether the residual of a regression result is normally 

distributed. A residual plot used to check the variance and the 

bias of the regression residual. From Fig. 14, it was known 
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that the regression result "Fit 4" had a normally distributed 

residual, the same variance of the residual (homoscedastic), 

and the residual had a 0-mean value (unbiased). From the 

residual plot, the residual of the regression result “Fit 4” was 

less than 2%, and it was relatively low when compared to the 

recall values so that the regression result was acceptable. 

The regression weights of “Fit 4” had been obtained from 

the regression analysis result of the recall against exposure 

and motion blur, as seen in Table 5. We obtained the 

relationship of the recall against illuminance, exposure time, 

and moving speed by substituting the non-linear regression 
equation of recall against exposure and motion blur with its 

regression weights, that is 

� � 0.60108 E )3.08732 ⋅ )� ⋅ 
 + 1.05862/�.�:9<8 ⋅
IJ�) 4.18046 + 3.65951 ⋅ � ⋅ 
// + ))� ⋅ 
 +
1.05862/�.�:9<8 ⋅ IJ�) + 3.27108 + 3.65951 ⋅ � ⋅ 
 E
2.18807 ⋅ � ⋅ 
 ⋅ #$

�%&$
//  (8) 

hence the equation could be used to optimize illuminance and 

exposure time in various moving speeds to maximize the 

recall.  

B. The optimum illuminance and exposure time in various 
moving speeds 

The optimization process follows E and t optimization 

methods that had already explained in Section II-B-3 using 

data given in Section III-A. The optimization focused on 
improving the recall because the precision had already always 

been 100%. The maximum possible recall was 74.72%, but it 

was rounded to 74.5% to make the scale of the charts more 

comfortable to read. The rtol of 0.1% used in the optimization 

process and rtol of 5% used for drawing charts. 

 

 
Fig. 15  Recalls against various illuminance and exposure time at 2.5 m/s 

 

Fig. 15 shows an example chart of the recalls against 

various illuminance and exposure time for a moving speed of 

2.5 m/s. There might be some multiple illuminance and 
exposure time sets that give nearly the same recall from the 

generated charts. The best decision was to choose set with 

lower illuminance as long as the recall did not less than the 

chosen tolerance. 

We calculated the optimum illuminance and exposure time 

for relative moving speeds 0 m/s - 2.5 m/s. We also calculated 

for higher relative moving speeds up to 15 m/s, as seen in Fig. 

16. It was possible to calculate the optimum illuminance and 

exposure time for moving speed beyond 15 m/s, as long as it 

was still within our data boundaries of the experiment results 

in terms of exposure and motion blur. From Fig. 16, it could 

be seen that the exposure time reduced to keep the motion blur 

low as the moving speed increased, but more illuminance was 

needed to keep the image well-exposed so that the recall kept 

maximum. The exposure time value and illuminance value 

should be optimum; otherwise, the recall decreased, as seen 

in Fig. 16, where the recall starts decreasing at 7.8 m/s 

because of motion blur. It is limited by the specification tmin 

and tstep of the camera. 
 

 
Fig. 16  The optimum E and t and its recall (precision always 100%) for the 

given range of speed for QR codes identification system in this paper  
 

 
Fig. 17  The optimum E and t and its recall (precision always 100%) for a 

given range of speed for QR codes identification system with lower minimum 

and step of exposure time 
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For example, if the imaging system replaced with the same 

camera but different on tmin and tstep that was 0.05 ms both, 

then the system's recall be able to be kept at maximum even 

beyond 7.8 m/s (as seen in Fig. 17). At some point in the 

moving speed, the recall might decrease again, but it was 

possible to keep maximum recall again as long as there was a 

camera with lower minimum exposure time and exposure 

time step. 

C. Applications 

The approach in this work might be applied in the QR code 

indoor localization and navigation system for mobile robots 

[1] to maximize QR code identification performance. The 

quantitative value of the camera exposure time and the 

illuminance on the QR code to be used for that system for the 

required moving speed able to obtain. In that case, the mobile 

robot moving speed was 2.5 m/s, and it is covered 

experimentally within this work. Zhang et al. [1] also used the 

ZBar algorithm for QR code identification. The possible 

values for camera exposure time and the illuminance on the 
QR code are available to obtain by drawing a graph using 

Equation 8 for a given moving speed, camera FOV on the 

moving direction, and image resolution on the moving 

direction. 

The smart wheelchair with QR codes localization system 

in  Cavanini et al. [8] can be improved using the approach in 

this work to address possible future problems when the smart 

wheelchair is used in real-life scenarios. Commonly known in 

real life, wheelchair usage is to move someone who is using 

it. We open the possibilities for the smart wheelchair in 

Cavanini et al [8] to maximize QR code identification 

performance while moving. 
Systems other than the localization system that require 

moving QR code identification performance are also possible 

to apply the approach in this work, such as vision-based 

structural displacement measurement [10]. The displacements 

of the QR codes were done by vibration process using a 

shaking table with a particular vibration frequency. Our 

approach in this work was using linear moving speed. It is 

possible to derive linear moving speed into the vibration 

frequency since the displacements measured linearly. 

IV. CONCLUSION 

This study analyzed the root cause of low identification 

performance on the Quick Response (QR) codes 

identification system. The study case on the ZBar algorithm 

showed that illuminance, exposure time, and moving speed 

affect QR codes identification system performance. 

Illuminance and exposure time affect images exposure that 

could make the image under-exposed or over-exposed; hence 

the contrast of the QR codes decreased so that the 

identification failed. The exposure time itself could make a 
motion blur on the image if the QR codes were moving; hence 

the structure of the QR codes was blurred, distorted, and 

overlapping with each other so that the identification failed. 

The relationship of the recall and the precision of the QR 

codes identification system against illuminance, exposure 

time, and moving speed was analyzed and represented with a 

non-linear regression equation. We also proposed a novel 

solution to overcome the physical phenomena that made QR 

codes identification system performance low by optimizing 

the illuminance and exposure time of the system for certain 

required moving speeds; hence, the identification 

performance maximized. The optimization performed using 

the numerical method presented in this paper. The 

optimization process started with specifying the requirements 

and the specifications of the system, then calculating 

boundaries, generating illuminance and exposure time values 

sets, calculating system identification performance for each 

value set, and setting the selection with a given criterion. The 

study case also showed that this method effectively 

maximizes the performance of the system of moving QR 
codes identification, even on higher moving speeds up to 2.5 

m/s. Our calculations were valid, as its still within exposure 

and motion blur boundaries set by our experiment result data. 

NOMENCLATURE 

d distance m   

E illuminance on an object lux  

f focal length m 
FN false negatives count - 

FP false positives count -  

FOV field of view m 

H exposure lux·s  

MB motion blur pixel 

n image resolution (pixels count) pixel  

p precision -  

r recall - 

s length on a particular direction m  

t camera exposure time s 

TP true positives count - 

TN true negatives count - 
v relative moving speed ms-1 

 

Subscripts 

ob between the camera and QR code 

lens camera lens  

m on the moving direction of the objects  

max maximum 

min minimum 

sensor camera sensor  

tol tolerance 
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