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Abstract— To date, the Frames Per Second (FPS) and accuracy of object detection based on deep learning have made rapid progress. 
However, the accuracy is limited by issues such as false positive (FP) cases. FP cases can trigger malfunctions in applications 
requiring high accuracy, such as in autonomous vehicles, where it is essential to ensure driver safety when malfunctions occur. To 
reduce the occurrences of FP cases, we conducted an experiment to derive the association by separately detecting a highly relevant 
element called a reference class, in addition to the target class to be detected. To measure the association, we obtained the integrated 
association by first finding the associations between the bounding boxes of the target and reference classes. Then we generated a 
reference class-based model by applying the integrated association to a trained model. The reference class-based model achieved 
approximately 15% higher accuracy than the trained model at iteration 1,000. Besides, the proposed model reduced the FP cases to 
approximately half of the 18.964% in the conventional method; the FP reduction through an increase in iteration was only 11.008%. 
The reference class can be applied in various fields, such as security and autonomous vehicle technology. It can be used to reduce the 
FP cases and improve the accuracy performance limits in object detection. Furthermore, it is possible to reduce the cost of reinforcing 
the training dataset and using high-performance hardware, and the time cost of increasing training numbers. 
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I. INTRODUCTION 

The advent of deep learning has enhanced the 
performance of artificial intelligence in many fields. In the 
Contest to classify multiple images belonging to a particular 
category (ISVRC, ImageNet Large Scale Visual Recognition 
Challenge), the classification error rate remained at 20% for 
many years. After the introduction of Alexnet [1] in 2012, 
that led to a sudden drop in the error rate to a 10% range. 
Although previous deep learning did not work well owing to 
hardware limitations, object detection has progressed rapidly 
once object classification became sufficiently accurate. 
Algorithms such as SIFT [2] and SURF [2] based on 
conventional feature points face limitations in real-time 
processing because of their processing speed. 

Research on improving the performance of feature-based 
algorithms with poor real-time performance is continuously 
being conducted. SSD, RCNN, Fast-RCNN, Faster-RCNN, 
You Only Look Once (YOLO) [3]–[4], and other deep 
learning models have been developed and applied to many 
applications. YOLO has a high frame rate (i.e., frame rate 
per second, FPS) and reasonable accuracy. 

 

TABLE I 
PERFORMANCE TABLE USING YOLOV3 

Model FPS 
YOLOv3-320 45 
YOLOv3-416 35 
YOLOv3-608 20 
YOLOv3-tiny 220 
YOLOv3-spp 20 

Table I [5] shows the performance results of YOLOv3 
based on the COCO Dataset [6] that has been used for 
performance measurement in many studies. YOLOv3 
achieves high speeds of 20 FPS (YOLOv3-spp), 35 FPS 
(YOLOv3-416), and 220 FPS (YOLOv3-tiny). Although the 
performance varies with the cameras available in the market 
in actual usage, the excellent real-time performance of 
current object detection technology can be inferred from the 
fact that most of the cameras commonly available in the 
market have frame rates of 30 FPS. With the improvement 
of object detection FPS performance, movements can be 
processed at high speeds in devices, such as autonomous 
vehicles and smartphones. However, to date, full accuracy 
has not yet been achieved. This has caused related problems. 
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Typical methods of increasing accuracy include using 
models that can perform well in the intended application and 
reinforcing the training dataset. Although these methods can 
improve accuracy, they also have drawbacks, such as they 
are costly and can only achieve limited performance 
improvement. 

 
TP TN

Accuracy
TP FN FP TN

+=
+ + +

 (1) 

Equation 1 is a formula for calculating the accuracy. 
Among the various performance evaluation elements 
considered in calculating the accuracy, a crucial element is 
the false positive (FP) case. For example, an autonomous 
vehicle traveling at high speed on a highway that detects a 
person in front at a short distance away is likely to execute 
sudden braking. Sudden braking at high speeds can cause 
damage to the vehicle and also endanger the driver. Thus, 
the FP case is more than just an element to consider for 
improving the accuracy, but it is also closely related to 
malfunctions when the system is applied to an actual product. 
Furthermore, it is highly likely that malfunctions caused by 
the FP cases will entail various safety issues. 

Object detection has made large progress in detection 
speed and accuracy. Despite the many studies on improving 
object detection performance [7]–[27], uni-class-based 
object detection has seen only limited improvement. FP 
cases can occur in uni-class-based object detection when 
there are many objects similar to the class to be detected. For 
example, in attempts to extract only a human face, there may 
be regions similar to the face, and FP occurs in the non-face 
region. Because typical methods for preventing FP cases in 
the detection process involve training using the uni-class, the 
training dataset can be reinforced or the model changed to 
one that is suitable for the use case. 

Reinforcing the training dataset has drawbacks such that 
substantial time and monetary costs are incurred in acquiring 
and pre-processing suitable data, and the range of possible 
performance improvement is limited. As an alternative, we 
can employ a model that is suitable for the required accuracy. 
For example, if the application does not require high speed, a 
highly accurate but slow model can be used. However, this 
approach is not applicable in the scenario of a self-driving 
car travelling at high speed in which the maximum 
performance limitations of the model cannot be overcome. 

In this study, we propose a reference class to reduce the 
object detection FP cases and increase the accuracy. 

II. MATERIAL AND METHOD 

A. Problems with the FP Case 

We aim to reduce the FP cases to improve the accuracy 
performance limit of the conventional model. FP case can go 
beyond simply improving the accuracy performance figures, 
and there is a possibility of causing safety issues for various 
projects. When obstacles are detected in front of autonomous 
vehicles traveling at high speeds, control of sudden braking 
and avoidance will be inevitable. In these situations, the 
driver’s safety cannot be guaranteed. Currently, these errors 
are corrected by comprehensively using sensors such as 
radio detection and ranging (radar) and light detection and 
ranging (LiDAR). However, if the road surface is wet 

because of weather conditions, diffused reflection can occur, 
which leads to malfunctions of the LiDAR sensors. Because 
there are constant reports of malfunctions in distance-based 
sensors, such as LiDAR, there is a need for vision sensor-
based countermeasures as backups when malfunctions occur 
[28]. Road environment objects such as traffic signs and 
traffic lights have been designed to meet driver requirements. 
Thus, research based on vision sensors is necessary. 

B. Reference Class: Solution for Improving Performance 

To solve the fundamental problem of FP cases in object 
detection, multi-class-based object detection is performed 
instead of uni-class-based object detection to detect the 
target class. The target class refers to the object class to be 
detected. One of the reasons why the FP case occurs when 
an object is misclassified as the target class is because of its 
similarity to the target class, coupled with insufficient 
training data or limited model performance. As a result, the 
FP case has a low detection confidence score [3] during the 
object detection.  

This study proposes a reference class as a solution to this 
problem. Humans do not consider only a single element 
when determining the class of a particular object. For 
example, assume that there is a picture of a dog with fur 
similar to the bread we commonly ate. We do not consider 
only the object itself to determine its class but also 
comprehensively consider its background and position and 
other objects in its vicinity. We focus on the elements that 
can be mistaken by us to identify the object during this 
process. In view of these human characteristics, we consider 
objects above the target class in a sense explained in the next 
paragraph. If there are many features similar to the human 
target class, the problem of incorrect detection cannot be 
resolved even if the training dataset is reinforced. 
Accordingly, the FP case can be removed when an upper 
object in the target class is detected together with the object. 
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(a)    (b) 
Fig. 1 Association between reference and target classes 

 
Fig. 1 shows an example of the target and reference 

classes. As shown in Fig. 1(a), an individual’s face cannot 
exist in general independently, that is, Person is the upper 
element to Face. Assuming that the target class is Face, 
Person has a high association with Face and is the upper 
element of Face. In this study, the reference classes are 
defined as the upper elements. In the same context, assuming 
that the target class is Wheel in Fig. 1(b), the reference class 
is Car. 

In addition to the compositional relationship between 
upper and lower elements in Fig. 1, objects that have a high 
association with the target class can also be used as the 
reference class. For example, a road mark, in general, has a 
road lane around it. Assuming that the road mark is the 
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target class, the road mark itself does not have a direct 
compositional relationship to the road lane but has a high 
association. Thus, the road lane can be used as a reference 
class owing to its high association to the road mark. 

C. Performance Improvement Process 

To measure the performance of the reference class, it is 
assumed that an object detection system is created to detect 
only the front face of a standing person. Hence, the 
processes illustrated in Fig. 2 are performed. The target class 
is the front face, and the reference class is the entire human 
body. The implementation details are as follows. 

 

 
Fig. 2 Performance improvement process 

D. Training Model with Reference Class 

As shown in Fig. 3, multi-class-based object detection is 
implemented instead of uni-class object detection to extract 
only the face looking at the front. YOLOv2 is used for the 
object detection model. The target class is Face and the 
reference class is Person, and the trained model is created by 
training with the two classes. 

 

      
(a) (b) 

Fig. 3 Trained model 
 
FFHQ-Dataset (Flickr-Faces-HQ) [29] and INRIA Person 

Dataset [30], [31] were used as the training datasets for 
training the object detection model. In particular, the INRIA 
Person dataset comprises images captured in various 
environments. Training with the dataset allows the object 
detection model to respond to various environments rather 
than limited specific environments, such as indoor 
environments. 

 

E. Detection Coordinates Extraction and Application 

The face is one of the components of the human body. 
Regardless of how much a person moves, the range of 
positions that the face and body can be relative to each other 
is limited. By looking at the results of Fig. 3(a) and 3(b), we 
can easily identify the association between Person and Face 
through their respective bounding boxes. However, there is 
the problem, as best described in Moravec’s Paradox [32], 
that the system may simply be unable to identify the 
association. To compensate for this, the coordinates of the 
bounding boxes generated by detecting the Face and Person 
classes are extracted to measure the association using the 
constraint that the posture ranges that the face and body can 
express are limited. 

 

 
Fig. 4 Extracted coordinates of bounding box 

 
To extract the minimum number of coordinates of the 

detected boundary boxes in Fig. 3 using the trained model, 
two coordinates are extracted for each boundary box. As 
shown in Fig. 4, the extracted coordinates are the upper left 
and lower right points of the bounding box. These points are 
used to measure the association using the width, height, area, 
and coordinates of the bounding box. By applying the 
association extracted from the bounding boxes to the trained 
model, a class-based reference model is created. The 
reference class-based model can avoid the FP cases that 
occurred previously and improve the accuracy of object 
detection. 

III.  RESULTS AND DISCUSSION 

In this section, we calculate the association between the 
reference and target classes by extracting the coordinates 
from the trained model through the processes described in 
Fig. 2. We then present the improvement in the accuracy of 
the reference class-based model that results from applying 
the extracted association to the trained model. 

A. Experimental Environment 

Each person has unique characteristics, such as face size, 
height, and shoulder width. Hence, it is impossible to derive 
an equation that provides an individual’s exact height simply 
by using his face size. Accordingly, overfitting to a specific 
group is highly likely to occur if only data from people of 
certain age groups or ideal body shapes, such as models, are 
used in an experiment.  

 

  
(a)                (b)  

Fig. 5 (a) Coordinates of Person class and (b) coordinates of Face class 
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To avoid this, we conducted an experiment based on 
varied data comprising infants, children, adolescents, adults 
of both genders, and professional models. For the 
convenience of explanation, the coordinates of the Person 
and Face classes are represented as shown in Fig. 5. 

B. Ratios-based Associations  

The width, height, and area of each detected person and 
face were calculated using the coordinates extracted in Fig. 
5(a) and 5(b). The results of the calculations to find the 
associations from the experimental images are shown in 
graphs (Fig. 6). 

 

 
Fig. 6 Distance calculation results according to frames 

 
Fig. 6 shows a graph of the results extracted from images 

of people with various body shapes. The numerical values of 
the Person_width, Person_height, Face_width, and 
Face_height extracted from the image frames were 
calculated in terms of image pixels. Because the pixel 
distances differ with the camera specifications and images, 
the association between the target class Face and the 
reference class Person was extracted using the ratios of the 
values in this graph. 

1) Limitations of Linear Equation Derivation 

Fig. 7 shows the calculated values of the height, width, 
and area of the target and reference classes. Each quantity is 
sorted based on the values for Face, which is the target class. 
Because each graph is sorted by the target class, the data 
points do not appear in frame order. To derive linear 
equations relating the target and reference classes, each 
element should have a linear relationship between the target 
and reference classes, but the results in the graphs do not 
meet this requirement. Each of the respective graphs for the 
height, width, and area shows the same trend. Although each 
element of the reference class has been sorted in anticipation 
of a linear increase in the target class element, the actual 
experimental results are more similar to noise than to linear 
increases. Therefore, it is difficult to tell that Face and 
Person have linear associations to each other from these 
graphs. 

The reason for this is because humans are not 
homogeneous objects, and each individual has a different 
face, shoulder width, and height. Thus, as shown in Fig. 7, 
there is a limit to the feasibility of deriving linear equations 

relating Face and Person. Similarly, although it might be 
possible to derive fitting equations to these graphs, there is a 
limit to the practical application because the error rates for 
the fitting equations will be high. Therefore, we extract the 
association by defining section limits rather than linear 
equations. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 (a) Association graph of human height and face height in different 
frames sorted by target class. (b) Association graph of human width and 
face width in different frames sorted by target class. (c) Association graph 
of human area and face area in different frames sorted by target class 

2) Measurement Ratio Graphs 

P2_y - P1_y

F2_y - F1_y

ReferenceClass Height
Height Ratio

Target Class Height
= =   (2) 

P2_x - P1_x

F2_x - F1_x

ReferenceClassWidth
Width Ratio

Target ClassWidth
= =    (3) 
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P2_x - P1_x P2_y - P1_y

F2_x - F1_x F2_y - F1_y

ReferenceClass Area
Area Ratio

Target Class Area
=

×
=

×

  (4) 

 
(a) 
 

 
(b) 

 

 
(c) 
 

Fig. 8 (a) Height ratio graph according to frame. (b) Width ratio graph 
according to frame. (c) Area ratio graph according to frame 

 
Figs. 8(a), 8(b), and 8(c) are graphs showing the ratios of 

the target and reference classes calculated through Equations 
2, 3, and 4, respectively. As previously described, humans 
are not objects with uniform features. The ratios of the 
heights, widths, and areas calculated for each frame are 
based on various categories of people such as infants, 
adolescents, adults, and professional models, and not just a 
specific category. It can be confirmed that these ratios lie 
within certain limited ranges. Although each person has 
different physical dimensions, the postures and physical 
dimensions expressed by the human body are limited to 

specific ranges that can be used for formulating the 
association. 

Among the three plots in Fig. 8, Fig. 8(b) shows the 
smallest range of variation because the width of the human 
shoulder, which is one of the elements affecting a person’s 
width, has a relatively narrow variation range. Although the 
physical shoulder width of each person may differ, when 
clothes are worn, the degree of variation of the bounding box 
extracted from the actual object detection is small. It has a 
narrower ratio range than the other elements. The height 
element has a wider variation range than the width. The area 
is calculated as the product of the width and the height and is 
influenced by the height. As a result, the ratio ranges of the 
height and the area, which is affected by the height element, 
have relatively large variations. Thus, the width ratio is 
considered to be an element that shows a high association 
with humans. 

 
3) Distribution Graphs 

 

 
(a) 
 

 
(b) 

 
(c) 

 

Fig. 9 (a) Distribution chart of height ratio. (b) Distribution chart of width 
ratio. (c) Distribution chart of area ratio 
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Fig. 9 shows the graphs obtained by converting the results 
in Fig. 8 into distribution charts, which have Gaussian forms. 
We can observe that the distribution of the width ratio is 
narrower than the distributions of the other elements. 
Distributions less than 0.01% in each distribution chart were 
negligible as noise and not considered in the section limit: 

 
1,3.808 7.291

( )
0,

Height Ratio
Height Association HA

Otherwise

≤ ≤= 


 (5) 

 
1,1.861 4.301

( )
0,

Width Ratio
Width Association WA

Otherwise

≤ ≤= 


 (6) 

 
1,9.18 25.04

( )
0,

Area Ratio
Area Association AA

Otherwise

≤ ≤= 


 (7) 

 
Through this process, we derived the association between 

the target and reference classes, as shown in Equations 5, 6, 
and 7. The area ratio is limited to a specific range but has the 
drawback of having a wide range distribution. 

C. Coordinate Associations 

To further investigate the associations using the ratios 
above, the lengths and sizes of the body and face bounding 
boxes were analyzed. Through this analysis, we found an 
additional association. 

 

 
Fig. 10 Coordinate distribution graph of the bounding boxes 

 
Fig. 10 shows the distribution graph of the coordinates of 

all the bounding boxes detected in the experiment. Notably, 
among the four coordinates, (P2_x, P2_y) is distributed far 
away from the other three coordinates. This is because the 
length of the entire human body is longer than the face, and 
the face is located at the upper part of the body. The 
distribution graph indicates that the association of the (P2_x, 
P2_y) coordinates is lower than that of other coordinates. 
Using this feature, we obtain the association between the 
coordinates of the target and reference classes. 

As shown in Fig. 10, the distributions of the (P1_x, P1_y) 
and (F1_x, F1_y) coordinates are quite similar compared to 
the other coordinates, indicating a high association between 
them. Accordingly, we extract the association based on these 
two coordinates. The distance measured from the 
coordinates on each image was scaled by the total image 
resolution to correct for the difference in pixel counts owing 
to camera settings and image resolution: 

 
CoordinateRatio=

Coordinate of ReferenceClass - Coordinate of Target Class

Resolution Pixels

 (8) 

 

 
Fig. 11 Coordinate ratio based on the x-coordinate 

 
Fig. 11 shows the coordinate ratio based on the x-

coordinate calculated using Equation 8. Although the 
coordinate ratio has a limited distribution range, many 
postures can be expressed by the body moving from side to 
side, thus resulting in a relatively large range when the 
coordinate ratios are calculated based on the x-coordinate. 
To address this issue, we calculated the coordinate ratio 
based on the y-coordinate. 

 

 
Fig. 12 Coordinate ratio based on the y-coordinate 

 
Fig. 12 shows the coordinate ratios calculated based on 

the y-coordinate to overcome the problem of the x-
coordinate ratios with a large range. A higher association is 
shown when we comprehensively consider both the 
distribution graph of Fig. 10 and the graph of Fig. 12. 

 

 
Fig. 13 Distribution chart of the coordinate ratio 

 
Fig. 13 shows the distribution chart of the coordinate ratio 

based on the y-coordinate in Fig. 12, which has a Gaussian 
form. Coordinate ratios with distributions of 0.01% or less 
were regarded as noise and not included in the section limits. 
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As a result, the association based on the coordinate ratio 
was defined as follows: 

 1,0 0.065
( )

0,

Coordinate Ratio
Coordinate Association CA

Otherwise

≤ ≤= 


       (9) 

Through this process, we obtained the coordinate ratio 
association between the target and reference classes shown 
in Equation 9. As shown in Figs. 10 and 13, the coordinate 
ratio has a very high association compared to other 
associations. It thus highly contributes to accuracy 
improvement. 

D. Detection Results Using Reference Class 

To find the association between the target class and the 
reference class, we extracted the height, width, area, and 
coordinate data. It was impossible to derive linear equations 
between the different datasets owing to the diversity of 
human body shapes. Therefore, associations defined through 
limited ranges of the elements were used in place of linear 
equations. Combining the extracted associations, the 
integrated association is obtained: 

, 1
( )

,

Detection HA WA AA CA
Integrated Association IA

None Otherwise

× × × =
= 


 (10) 

Extracting the integrated association between the target 
and reference classes in Equation 10 and applying it to the 
trained model can reduce the FP cases, which are one of the 
causes of degraded accuracy. To evaluate the application of 
the integrated association to the trained model, we used part 
of the COCO dataset containing various objects, such as 
people, animals, and food. By using the COCO dataset 
consisting of various objects as shown in Fig. 14 as the 
evaluation dataset rather than a dataset biased towards 
specific objects, we were able to increase the reliability of 
the measurement accuracy in varied environments and avoid 
overfitting to a specific environment. 

 

 
Fig. 14 Sample of the COCO dataset 

 
(a) 

 
                                 (b) 

Fig. 15 (a) Before: trained model (b) After: reference class-based model 
 
Fig. 15 [33] shows the results of detecting the target class, 

i.e., Face. In Fig. 15(a), the results from the trained model 
show a FP case in which a bear doll at the bottom with 
similar features to the human face was misidentified as a 
human face. Fig. 15(b) shows the results from the reference 
class-based model for which the integrated association in 
Equation 10 was applied to the trained model to address this 
issue. The association analysis for the misidentified bear doll 
at the bottom showed that the doll does not have any 
association with the reference class, thus eliminating the FP 
case. In addition to Fig. 15, we were able to reduce the 
number of FP cases caused by features similar to the target 
class in other images, some of which are shown in Fig. 16, 
and hence improve the accuracy. 

The derivation of a linear equation is not guaranteed in 
the association measurement between the target and 
reference classes. As shown in this work on the association 
between the face and the entire human body, there is the 
problem that a linear association cannot be derived because 
of the presence of numerous variables unless the objects are 
uniform. This problem can be solved by extracting range 
limits for the associations of the suggested elements. 

We can prevent fraudulent face recognition in 
smartphones using the owners’ photographs by using 
reference classes to improve accuracy by reducing the FP 
cases. Assuming the target and reference classes to be the 
human face and the entire body respectively, as in the 
current study, comprehensive association with the body can 
be applied when facial recognition data are input. This can 
counter illegal input in facial recognition using only face 
data in applications sensitive to malfunctions caused by FP 
cases. In addition, using the posts of traffic signs and traffic 
lights as the reference class for recognizing traffic signs and 
traffic lights can improve the accuracy in a wide range of 
areas. 
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Fig. 16 Left: trained model, right: reference class-based model 

 
E. Accuracy Performance Evaluation Using Reference 

Class 
 

 
Fig. 17 Accuracy performance comparison of trained and reference class-
based models 

Fig. 17 shows a graph comparing the accuracy 
performance of the reference class-based model to which the 
extracted integrated association was applied and a model 
trained in a generic way. 

The face detection accuracy of the trained model was 
approximately 67.217% at iteration 1,000 and approximately 
76.616% at iteration 100,000, which constitutes 100 times 
more training. Even after a 100-fold investment increase in 

training, the performance improvement was limited with an 
accuracy increase of only approximately 9.399%. To solve 
the problem of small performance improvement, an 
integrated association based on the reference class was 
applied to the trained model at iteration 1,000. The accuracy 
was approximately 81.932%, an improvement of 14.715%. 
The accuracy surpassed that of the trained model at iteration 
100,000. When the integrated association was applied to the 
trained model at iteration 100,000, the accuracy was 
82.773%, which is an improvement of 6.157% compared to 
the trained model. 

Despite the difference of more than 90,000 training 
iterations, the trained model at iteration 100,000 has a lower 
accuracy than the reference class-based model. The results 
from applying the integrated association based on the 
reference class show that it is possible to reduce the cost and 
time incurred in using high-performance hardware for a long 
time and that the accuracy performance limit of the 
conventional method can be improved. 

Fig. 18 shows a graph of the FP case percentage, i.e., the 
ratio of the FP cases to the total number of cases, calculated 
using Equation 11. The FP case percentage was 29.972% at 
iteration 1,000 and 18.964% at iteration 100,000, showing 
that the number of FP cases decreases with increased 
training. However, despite the 100-fold increase in training, 
the FP cases were reduced by only 11.008%. 
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Fig. 18 FP case comparison of trained and reference class-based models 

 
FP

FPcasePercentage
TP FN FP TN

=
+ + +

 (11) 

 
The FP case percentage decreased by 22.511% at iteration 

1,000 and by 14.707% at iteration 100,000 when the 
integrated association based on the reference class was 
applied. Although there were 90,000 fewer training 
iterations, the reduction of the FP percentage in the 
reference-class-based model at iteration 1,000 was more than 
twice that of the trained model at iteration 100,000. The 
application of reference class-based integrated association 
for the reduction of FP cases, which are a cause of degraded 
accuracy, shows that FP cases can be reduced at low 
monetary and time costs. 

IV.  CONCLUSIONS 

This study aimed to improve the accuracy of object 
detection. To date, object detection based on deep learning 
has made rapid progress in terms of accuracy and FPS, but 

there is still a limit to accuracy improvement. To improve 
the accuracy, we proposed the reference class as a method of 
reducing FP cases beyond the conventional methods of 
augmenting the data of the training dataset or using the 
appropriate model for the project. FP cases are one of the 
fundamental causes of lowered accuracy. In this study, using 
the reference class, we extracted the association between the 
target class and the reference class for multi-class, rather 
than uni-class, object detection. 

We performed the experimental process shown in Fig. 2. 
We extracted the association using the height, width, area, 
and coordinates of the bounding boxes of each detected class. 
Since we were unable to derive linear equations relating 
these elements to one another because of the varying 
characteristics of the target class in this experiment, we 
extracted the associations based on range limits obtained by 
analyzing the association distribution of each element. We 
obtained the integrated association by combining the 
associations of the height, width, area, and coordinates 
extracted from the reference class and were able to reduce 
the FP cases by applying the integrated association to the 
training model. The integrated association can be further 
applied to applications sensitive to malfunctions caused by 
FP cases. 

The reference class-based model generated by applying 
the reference class-based integrated association to the trained 
model increased the accuracy by approximately 15% at 
iteration 1,000 compared to the trained model. This result 
surpasses the accuracy of the latter at iteration 100,000 
despite the 100 times difference in the training time. Besides, 
the occurrence rate of the FP case at iteration 1,000 was 
7.461%, which is a reduction of approximately 23% 
compared to the conventional trained model. The proposed 
model reduced the FP cases to less than half of the 18.964% 
FP rate in the conventional method at iteration 100,000. The 
latter is a reduction of only 11.008% compared to the FP rate 
at iteration 1,000 despite the increase in the iteration count to 
100,000. 

Using the reference class, the FP cases in object detection 
can be reduced and the accuracy performance limits 
improved. Furthermore, the cost of reinforcing the training 
dataset and using high-performance hardware and the time 
cost of increasing training numbers can be reduced. 
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