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Abstract— Robots have been applied in science education for a long time. Inquiry-based learning, as a student-centred method to 
discover different relations, has been considered as an effective learning approach in science education and robots are often used to 
apply student-guided inquiry. It is, however, not clear what the effect of inquiry-based scenarios is in learning science when students’ 
motivation and novelty effect are taken into account. In our study, we tested seven inquiry-based scenarios in secondary school 
physics with a sample of 47 students in the experiment classes and 41 in the control classes. Results revealed that the inquire-based 
scenarios improved students’ inquiry skills and subject knowledge and skills in the case of the experiment classes and also in the case 
of the control classes. Study motivation did not improve in the study, explained by the fact that the schools have used robots 
previously in learning and the novelty effect has faded out. Based on our discussion, the use of robots in education needs to focus more 
on supporting students’ thinking activities and on increasing their awareness about their own skills and learning process. Further 
studies are needed to understand in-depth how teachers’ activities in the classroom might have an effect on the usability of robots in 
education and how students’ thinking and awareness of the learning process could be improved in order to have a stronger effect on 
learning outcomes as well. 
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I. INTRODUCTION 

Robots have been applied in education since the 1980s 
starting from the construction of objects [1] and the use of 
social robots [2], [3] to a large variety of uses [4]. The initial 
idea of using robots in science education mainly originated 
from Seymour Papert who defined constructionism as 
enabling a person to learn with objects [5]. When people use 
their hands, they simultaneously construct thoughts in their 
brain. When objects are more personal, people are more 
motivated and obtain deeper learning. Constructionism could 
be seen as an implementation of constructivism, as 
introduced by Piaget. According to constructivism, 
knowledge cannot be transferred to the brain, as data is 
copied from one hard drive to another. Instead, knowledge is 
created in the brain. Despite educational theories supporting 
the use of technology in the classroom having been around 
for a long time, no widespread solution to use robots in 
education was available until LEGO released Mindstorms 
RCX in 1998. For example, nowadays robots could be used 

in gamifying learning process, and this might have a positive 
effect on learning outcomes, as revealed in the study of 
Lindberg [6]. 

Educational robotics has been actively used in Estonian 
schools for more than ten years. Nowadays more than 70% 
of schools are equipped with educational robotics platforms. 
Robots are mostly used in extracurricular activities that do 
not enable pupils’ wide access to robotics and exclude the 
use of robots in formal education. The number of robots per 
school varies, but there are a few examples where schools 
are able to give courses with robots to all pupils in one class. 
Another challenge is an increasing variety of available tools 
in the last years. The variety of educational robotics might 
not be an issue in itself, but schools start to collect different 
platforms believing that educational innovation is born out 
of getting to know another tool. Alimisis [7] has stated that 
educational innovation is based on balance of hardware and 
proper methodology. Focusing only on hardware will not 
allow neither the teacher nor the pupil to go deeper with the 
robot and solve more complex problems. The learning curve 
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is much higher when a robot is used as a tool not as an 
object. The problem is that although there are many tools 
available, their use does not focus on developing skills and 
enhancing formal education. The purpose of educational 
robotics in Estonia is not to make STEM popular and build 
more engineers, but it is to give every child an opportunity to 
become an engineer and to develop future skills. These 
future skills are embedded in STEM and with an evolving 
world where technology increasingly surrounds society, 
people need to have these skills. Pedaste and Leijen [8] have 
showed how advanced technologies support a contemporary 
learning approach and conclude, in their review, that 
technologies are mainly designed to acquire subject 
knowledge and skills. Future oriented learning skills and 
subjective well-being, a pre-requisite for learning, are often 
not supported. In STEM professions, problem solving skills 
[9], inquiry skills [10], and computational thinking skills 
[11][12] are needed, and for that reason we also focused on 
these skills in our study. 

As Seymour Papert defined the subject math as a tool of 
cognition, robotics could just as well have the same role in a 
curriculum today. In our study, robotics is a tool with a 
proper methodology to develop inquiry and problem solving 
skills. We also see that inquiry is an important method to 
improve students learning outcomes in the cognitive domain 
– in acquiring subject specific knowledge and skills. The 
positive effect of inquiry-based learning has been revealed 
even in large scale studies like PISA [13] where the nature 
of inquiry activities has not been controlled. Robots could be 
seen to support inquiry-based learning as tools to increase 
learning motivation and to help reach deeper levels of 
learning [1][14]. Knowledge about the subject could be 
taken as a horizontal result over the subject where robots are 
used. However, in order to go deeper with learning and to 
increasing learners’ intrinsic motivation towards learning, 
the use of robots should also ensure a certain level of pupil 
autonomy [15]. Therefore, we also have to understand how 
educational robotics supports autonomy, which is, according 
to the self-determination theory [16], one of the foundations 
for motivation. Self-determination theory states three 
psychological needs required for the formation of 
motivation: perceived competence, autonomy, and 
relatedness. We hypothesize in our study that giving pupils 
more autonomy with robots leads to deeper learning and as a 
result better knowledge about the subject. In order to test this 
hypothesis, we used robots as tools for learning in learning 
scenarios which enable assignments focusing on deeper 
learning of inquiry and problem-solving skills in addition to 
knowledge about the subject. Our guiding research question 
was the following: how the use of robots in formal lessons of 
physics affect pupils’ inquiry and problem solving skills, 
knowledge about the subject, and motivation towards 
learning? More specifically, three research questions were 
formulated: 

• How did pupils improve their inquiry skills, content 
knowledge and skills, and motivation in applying 
scenarios using robots to learn physics? 

• What are the variables predicting pupils’ inquiry skills 
in applying scenarios using robots to learn physics? 

• What are the variables predicting improvement of 
pupils’ content knowledge and skills in applying 
scenarios using robots to learn physics? 

II. MATERIAL AND METHOD 

A. Intervention 

In this study we aimed to provide new robotics-oriented 
methods for learning seven topics of physics in the national 
curriculum in Estonia for ages 16-18. The selected topics 
were the following: 

• Acceleration 
• Newton’s second law 
• Strength of the cable measured by pulling force 
• Angular velocity 
• Impulse momentum 
• Pendulum 
• Forces of friction 

The national curriculum in Estonia does not limit the 
methods teachers need to use for teaching. We invited two 
schools to participate in our study to test the new methods 
for learning physics using robots. Both schools had teachers 
who have experience using robotic devices in their teaching. 
The schools were selected based on their own willingness to 
try out experimental approach in physics teaching. 

In both schools, a control and an experiment class were 
chosen. The control class learned the physics topics in a 
traditional way, i.e. the usual methods the teacher had been 
using to teach physics. The sample of the study consisted of 
88 students, 47 in the experiment classes and 41 in the 
control classes. Teachers explained during the post-study 
interviews that traditional methods are based on learning 
formulas and concepts from text- and workbooks. 

An experimental approach to the selected physics’ topics 
was built only using worksheets with LEGO Mindstorms 
EV3 base and custom models. Worksheets were interactive 
PDF files that followed an inquiry learning method 
introduced by Pedaste et al. [10]. Pupils had to understand 
the problem, raise an inquiry question, form an hypothesis, 
collect data with the robotic tool, analyze the data and form 
conclusions. The work with robots and the developed 
worksheet supported pupil’s bigger autonomy and 
hypothetically would lead to increased motivation and 
deeper learning towards the topic. Teacher intervention was 
minimal including technical aid and managing time and 
tasks. Some worksheets did not present a formula, but 
guided pupils to find it out themselves. The pupils were 
asked to work in pairs. Each pair of pupils had to work with 
one robot and a worksheet. Although each pupil having a 
personal robot would probably increase a pupil’s motivation 
even more, the lack of hardware sets the limit. Experience of 
practitioner over the years of educational robotics in Estonia 
shows one robot per two pupils’ ratio to be most optimal. 

Robotic tools in the experiments were built using the 
LEGO Mindstorms EV3 platform and Vernier sensors that 
connect to the robot controllers. In five experiments, only 
the robot was used. In two experiments, in forces of friction 
and strength of the cable, Vernier force sensor were 
connected to the robot to measure forces in the experiment 
and values were displayed as a graph on the computer 
screen. A reason for carrying out the experiment as 
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described above is to provide a simple and easy to use tool 
for STEM teachers to enhance their lessons. The main focus 
is minimal preparation time and plug & play technology. 

The main purposes of the experiments were to increase 
inquiry and problem-solving skills and help pupils better 
understand physics concepts compared to traditional learning 
methods. After experiment classes completed all the 
experiments, pupils filled in the post-test measuring the 
same skills as the pre-test. The control class followed the 
same procedure as the experiment class. We also studied 
motivation towards learning. Seymour Papert [5] has shown 
how hands-on tools affect the creation of knowledge with 
constructionism theory. Knowledge created using the 
constructionist approach has more connections in the human 
brain and is therefore remembered longer. Effect and 
motivation are even stronger when knowledge is created 
with an object that is personal to users. Constructionism 
together with inquiry learning and robotics will create new 
synergy that would enable better learning results and 
increase the motivation of pupils towards STEM subjects. 

B. Data collection and quality of instruments 

We used a test to assess inquiry skills and content 
knowledge and skills in physics. This test was developed in 
the context of our study and therefore we first had to conduct 
an analysis of the quality of the test with IRT analysis and 
the structure of the test with confirmatory factor analysis. 
Learners’ motivation, autonomy, and learning strategies 
were assessed using tests that have previously been 
validated, but we controlled the expected factor structure of 
these in the context of our study. 

One-parameter IRT (Item Response Theory) analysis was 
used to evaluate the quality of the test measuring inquiry 
skills and also content knowledge and skills. IRT allows 
evaluating the quality of each test item. IRT analysis was 
conducted using WINSTEPS 4.0.1. We used 29 items in the 
pre-test and 29 items in the post-test. 11 items measured 
inquiry skills and 18 items content knowledge and skills. 
First, the test difficulty was checked. The result of the check 
indicated that the test is rather more difficult than more 
simple for the pupils: difficulty measure -.35. However, the 
score did not indicate that the test would be too difficult for 
the target group. Next, the test’s reliability was calculated 
and this was .84. This shows how stable the difficulty of the 
test items is for different respondents. 

Further, item level quality was tested. The items used for 
measuring inquiry skills were the same in the pre- and post-
test, but the context of the questions was changed. Items for 
measuring content knowledge and skills were usually the 
same, only in the case of two items was the number changed 
to be used in making calculations, and one item was 
different in the pre- and post-test. IRT analysis showed that 
most of the items differentiate pupils well. As estimated by 
the IRT model, 1.0 is considered to be ideal discrimination. 
Useful test items should have discrimination scores 
between .5 and 2.0. In our item list, there were five items in 
the pre-test and four items in the post-test that were with a 
discrimination score below .5 and these were left out from 
our following analyses. Next, we analysed the item fit 
measure of the test items. It was tested by a correlation 
coefficient that shows how well the scores of each item are 

in line with the expected difficulty level of these items in the 
test. We used a threshold of .20 for acceptable items, as 
suggested in the Winsteps manual. It appeared that all items 
were with good fit. 

Confirmatory Factor Analysis was used to test the quality 
of the instruments used in the study: for measuring inquiry 
skills, content knowledge and skills, motivation, and 
learning strategies. 

1) Inquiry Skills: There were 11 items to measure 
pupils’ inquiry skills in the pre- and post-test. The 11 items 
were measured with six questions. One question gave 
answers to three linked questions – pupils had to formulate a 
research question, and it was coded as three items: 
correctness of formulation, recognition of independent 
variable, and recognition of dependent variable. Similarly, 
the question for formulating hypothesis was coded as four 
items. The questions were the same in both tests (e.g. 
formulate a research question), but the topic was a bit 
different. Confirmatory factor analysis was used to check the 
factor structure. Two hypotheses were checked: i) two-factor 
structure of the data according to what planning (formulation 
of research questions and hypotheses) is a separate factor 
from the implementation (analysis of data and making 
conclusions), ii) one-factor structure. 

The analysis of the two-factor model gave good fit indices 
(χ²/df = 1.77, RMSEA = .066, CFI = .967, TLI = .941, 
SRMR = .070); however, there was a strong correlation 
between the two factors (standardized correlation 
coefficient .858) and the model was rejected. The one factor 
model had similar fit indices (χ²/df = 1.79, RMSEA = .067, 
CFI = .965, TLI = .939, SRMR = .071) and was further used 
in the analysis. Ten items were used in the final model. 
Further, item level quality was tested. The items used for 
measuring inquiry skills were the same in the pre- and post-
test, but the context of the questions was changed. Items for 
measuring content knowledge and skills were usually the 
same, only in the case of two items was the number changed 
to be used in making calculations, and one item was 
different in the pre- and post-test. IRT analysis showed that 
most of the items differentiate pupils well. In our item list, 
there were five items in the pre-test and four items in the 
post-test with discrimination score below .5 and these were 
left out from our following analyses. Next, we analysed the 
item fit measure of the test items. It was tested by a 
correlation coefficient that shows how well the scores of 
each item are in line with the expected difficulty level of 
these items in the test. It appeared that all items were with 
good fit. 

2) Content Knowledge and Skills: There were 19 items 
to measure pupils’ content knowledge and skills in the pre- 
and post-test. The items were about physics topics in focus 
of the robotics intervention. There were two hypotheses 
about the structure of the items. The first hypothesis was a 
three-factor model differentiating items measuring 
knowledge, understanding, and application. The 
confirmatory factor analysis did not support this hypothesis 
– there was no convergence when the expected number of 
iterations exceeded. The one-factor had poor quality 
according to some of the fit indices (χ²/df = 1.59, RMSEA 
= .058, CFI = .668, TLI = .623, SRMR = .088). Ten out of 
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19 items had a low factor loading (below .3) and, therefore, 
these were left out from the model. The adjusted model had 
a good fit (χ²/df = 1.36, RMSEA = .045, CFI = .943, TLI 
= .918, SRMR = .080) and nine items describing this model 
were used in the following analyses. 

3) Motivation: There were 21 items to characterize 
pupils’ motivation. The items were translated and adapted 
from the SMQ-II instrument 
(https://coe.uga.edu/assets/downloads/mse/smqii-glynn.pdf) 
The instrument consisted of five dimensions: intrinsic 
motivation, self-efficacy, self-determination, grade 
motivation, and career motivation. The instrument was 
designed to take into account extensive analysis of other 
instruments used for evaluating students’ motivation in 
science. In our study, only one item was selected for 
describing grade motivation, as it was not in the focus of the 
study. Five items were used in case of all other dimensions 
and the model with these dimensions had only moderate fit 
(χ²/df = 2.45, RMSEA = .091, CFI = .878, TLI = .858, 
SRMR = .085). Based on the analysis of the model, it was 
decided to leave out one item and to allow two correlations 
between items within one dimension. The adjusted model 
had a good fit (χ²/df = 1.96, RMSEA = .074, CFI = .925, TLI 
= .911, SRMR = .078) and the items describing this model 
were used in our following analyses (19 items). We also 
checked if these four dimensions of motivation can be 
merged in the analysis into one factor, but the data did not 
support this. Therefore, these dimensions were used 
separately in the analyses. 

4) Learning Strategies: Learning strategies were 
characterized using a higher-order factor model of four 
factors that were combined into two higher-order factors. 
The factors were selected according to the relevance in the 
study from Vermunt [17]. The first higher-order factor 
described deep processing, and it consisted of factors i) 
relating and structuring and ii) critical processing. The 
second higher-order factor was stepwise processing 
consisting of the factors i) memorizing and rehearsing and ii) 
analyzing. The number of items in the factors varied from 
four to seven. Learning strategies were only measured before 
the intervention. 

First, the four-factor model was tested with confirmatory 
factor analysis. The model fit was not good according to 
some fit indices (χ²/df = 1.77, RMSEA = .094, CFI = .865, 
TLI = .847, SRMR = .082) and the correlation between some 
of the factors was too high. Therefore, the model was 
adjusted leaving out three items and allowing two 
correlations between items within one dimension. The 
adjusted model had a good fit (χ²/df = 1.42, RMSEA = .069, 
CFI = .935, TLI = .923, SRMR = .063) but the standardized 
correlations between critical processing and memorizing and 
rehearsing, and critical processing and analysing were still 
above .8. However, we decided to use this model further in 
the study as the model had been used in several other studies, 
and our sample was a bit small to get strong pieces of 
evidence for rejecting the model. Next, we tested if the 
higher-order model could be described based on the four 
identified factors. The higher-order model had a good fit 
according to fit indices (χ²/df = 1.45, RMSEA = .071, CFI 
= .931, TLI = .919, SRMR = .066) and, therefore, it was also 

possible to use deep learning strategy as one higher-order 
factor. 

The autonomy of pupils was characterized by three items 
selected from the Intrinsic Motivation Inventory developed 
and tested by McAuley, Duncan, and Tammen [18]. The test 
was used only before the intervention to use autonomy as a 
variable in understanding the learning situation. The model 
was identified in confirmatory factor analysis, but with zero 
degrees of freedom and, therefore, it was not possible to 
assess the model fit. All three items had high factor loadings, 
and we decided to use them in our following analyses. 

C. Analysis to Answer Research Questions 

First, data were checked for normality. Only five items 
out of 24 used in the analysis appeared to be normally 
distributed. Therefore, non-parametric statistical analyses for 
describing changes in pupils’ inquiry skills, content 
knowledge and skills, and pupils’ motivation was used. The 
analyses were conducted using IBM SPSS Statistics Version 
25. 

The research questions about predicting improvement of 
inquiry skills and content knowledge and skills were 
answered using structural equation modeling. MPlus 
software (Version 7; Muthen & Muthen, 1998-2015) was 
used for these analyses, but we can only demonstrate trends 
that need to be studied further in studies where the sample is 
larger and as a result, a normal distribution of the data could 
be expected. 

III.  RESULTS AND DISCUSSION 

Wilcoxon Signed Rank test showed that both pupils’ 
inquiry skills and content knowledge and skills improved 
statistically significantly in using the intervention. However, 
their motivation did not change in any of the four aspects 
distinguished in our study (see Table I). 

The experiment and the control group did not show any 
statistically significant differences in the improvement of the 
assessed constructs based on Mann-Whitney U test (see 
Table II). 

TABLE I 
IMPROVEMENT OF PUPILS’  INQUIRY SKILLS, CONTENT KNOWLEDGE AND 

SKILLS, AND MOTIVATION IN THE PHYSICS LESSONS OF THE EXPERIMENT 

Variable Negative 
ranks 

Positive 
ranks 

Ties Z p 
 

Inquiry skills 10 76 1 -6.78 <.001 
Content 
knowledge and 
skills 

16 69 2 -6.02 <.001 

Intrinsic 
motivation 

36 35 16 -.16 n.s. 

Self-efficacy 37 35 15 -1.08 n.s. 
Self-determi-
nation 

33 35 19 -.54 n.s. 

Career 
motivation 

37 34 16 -.37 n.s. 

TABLE II 
COMPARISON OF EXPERIMENT AND CONTROL GROUP IMPROVEMENT IN 

INQUIRY SKILLS, CONTENT KNOWLEDGE AND SKILLS, AND 

MOTIVATION IN THE PHYSICS LESSONS OF THE EXPERIMENT 

Variable Mean rank – 
Control group 

Mean rank – 
Experiment group 

Z p 
 

Inquiry skills 42.56 46.19 .51 n.s. 
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Content 
knowledge and 
skills 

45.21 43.88 .81 n.s. 

Intrinsic 
motivation 

44.59 44.43 .98 n.s. 

Self-efficacy 42.45 46.29 .48 n.s. 
Self-
determination 

46.09 43.12 .58 n.s. 

Career 
motivation 

41.91 46.76 .37 n.s. 

A. What are the variables predicting pupils’ inquiry skills? 

Two models were tested. The first model tested how 
different variables can predict the improvement of inquiry 
skills. In the second model, the inquiry skills in the post-test 
were predicted. The models (see Table III) were not with 
acceptable fit indices, and only a few variables predicted the 
inquiry skills statistically significantly; however, the models 
show some trends that need to be studied further. 

TABLE III 
SEM MODELS PREDICTING INQUIRY SKILLS 

 Dependent variable in the models 
Improvement in 
inquiry learning 

Post-test on 
inquiry learning 

Quality of the models 
How much of the 
dependent variable was 
predicted 

4.9% 50.9% 

Chi-square/df 1.74 1.67 
RMSEA .091  
CFI .659 .654 
TLI .631 .629 
SRMR .123 .117 
Independent variables 
 Regression coefficient 
Content knowledge and 
skills (pre-test) 

.021 .662* 

Autonomy .325 .067 
Deep learning strategies -.224 -.239 
Intrinsic motivation -.098 -.028 
Self-efficacy .386 .432 
Self-determination -.699 -.439 
Career-motivation .336 -.121 
Gender .039 -.211* 
Experiment group .082 .043 
*statistically significant regressions 

 
Interesting differences were seen in comparing regression 

coefficients when predicting improvement vs post-test 
results on inquiry learning. For example, pre-test content 
knowledge and skills did not predict the improvement of 
inquiry learning skills but predicted statistically significantly 
the post-test results. Pupils’ autonomy and career-motivation 
seemed to predict improvement of inquiry skills but did not 
predict the post-test results. Gender did not predict 
improvement but predicted post-test results. It is also 
remarkable that self-efficacy seemed to predict higher 
learning gain and post-test achievement in inquiry skills, but 
self-determination had a negative effect on both of them. 

B. What are the variables predicting improvement of pupils’ 
content knowledge and skills? 

Two models were tested. The first model tested how 
improvement of content knowledge and skills can be 

predicted by different variables. The second model predicted 
content knowledge and skills in the post-test. There was no 
convergence in the case of these models as the maximum 
number of iterations was exceeded and, therefore, the 
models show only some trends that need to be studied 
further (see Table IV). 

TABLE IV 
SEM MODELS PREDICTING CONTENT KNOWLEDGE AND SKILLS 

 Dependent variable in the models 
Improvement in 
content 
knowledge and 
skills 

Post-test in 
content 
knowledge and 
skills 

Quality of the models 
How much of the 
dependent variable was 
predicted 

63.0% 50.5% 

Chi-square/df No convergence.  
The number of 
iterations exceeded. 

No convergence.  
The number of 
iterations exceeded. 

Independent variables 
 Regression coefficient 
Inquiry skills (pre-test) -.141 -.223 
Autonomy -.005 -.011 
Deep learning 
strategies 

.003 -.138 

Intrinsic motivation -.878 .636 
Self-efficacy .073 -.490 
Self-determination -.071 .320 
Career-motivation .208 .119 
Gender .036 .160 
Experiment group -.028 -.037 

 
Interesting differences are seen in comparing regression 

coefficients when predicting improvement vs post-test 
results on content knowledge and skills. For example, 
intrinsic motivation has a strong negative regression on 
improvement in content knowledge and skills but a positive 
effect on the post-test results. In contrast, self-efficacy 
cannot predict learning gain but has a positive effect on post-
test results. 

Some interesting findings can also be seen when 
comparing how the same variables predict inquiry skills vs 
content knowledge and skills. If intrinsic motivation has a 
strong positive effect on the post-test results of content 
knowledge and skills, then it does not have an effect on 
inquiry skills. Self-efficacy, however, has a positive effect 
on post-test inquiry skills results but a negative effect on 
content knowledge and skills. Self-determination also has a 
different effect on these dependent variables. 

C. General discussion 

Based on the results of the analysis, we cannot fully 
confirm the hypothesis that the use of robots would increase 
pupil’s inquiry and problem-solving skills, knowledge about 
the subject, and motivation towards learning. Indeed, the 
Wilcoxon Signed Rank test showed statistically significant 
improvement in inquiry, content knowledge, and skills, but 
this was also the case for the control group. This shows that 
robots are at least an alternative to the more traditional 
methods to learn physics in secondary school. Thus, the 
model of educational robotics introduced by Altin and 
Pedaste [1] has been somewhat justified with our empirical 
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findings. There is no better or worse effect on learning gain. 
It was also interesting that the use of robots did not have an 
effect on learning motivation. This might be explained by 
the fact that the schools which participated in the study have 
used robots in their learning process for a longer period of 
time. Therefore, a significant novelty effect is missing, and 
robots are perceived by students as one tool for learning, 
among others. Therefore, we could believe that our study 
reveals that the technology in itself does not have a positive 
effect on motivation when the novelty effect has faded out. 
The effect on learning motivation, when using robots in 
learning physics, needs to be investigated further as several 
other studies have shown a positive effect of educational 
robotics on motivation, e.g. [19]–[22]. 

We also acknowledge that our study has some limitations 
and, therefore, further studies are needed to better 
understand the processes of how robots could be even more 
effectively used in inquiry-based science learning. For 
example, our sample was small and conducted in schools, 
and with physics teachers, we already knew. These teachers 
have generally been active in STEM educational activities 
and might do more than teachers usually do in their classes. 
Thus, the results with less motivated teachers might not be 
as supportive and might need more scaffolding in applying 
the innovative method to learn with technologies. The same 
has recently been found in the analysis of the effect of 
inquiry-based instruction [23]. In addition, it is important to 
study further the exact classroom activities that were not 
observed in our study. It might reveal the benefits of inquiry-
based use of robots in comparison with more traditional 
methods. For example, Dobber [24] found in their meta-
analysis of 186 studies that teachers might have a very 
crucial role in metacognitive, conceptual, and social 
regulation important to benefit from the inquiry approach. 
However, a more specific procedure also gives more control 
over the process of teaching with robots. We understand that 
the learning process needs to be more controlled but still 
guided. Newman and DeCaro [25] have found in their 
empirical study that guidance through worked examples is 
even better than just exploring using an invention activity. 
This means that the activity used in our study could also be 
improved when learners are first introduced to examples 
how to learn from robotics activities. In addition, they found 
that completing a pre-test could further increase the learning 
gain. Thus, we can suggest that in the new experiments, we 
should make the pre-test results available to the learners so 
they can understand their learning gaps. 

Another explanation of our findings might be that the 
learners’ thinking process needs to be facilitated more in the 
robotics-based inquiry scenarios. Wang and Wegerif [26] 
have concluded in their editorial of a special issue on active 
learning benefits in technology-enhanced education that we 
need to move from the active-in-behavior process to active-
in-thinking process in learning with technology. It means 
that we need to analyze and revise the procedure of applying 
the learning scenarios so that students focus more on 
conceptualizing their activities. Following the ideas of open 
learner modeling, we suggest making the learning process 
and progress more explicit to the learners [27][28][29][30]. 
In this case, learning with robots could support the 
improvement of learning skills, a gap identified by Pedaste 

and Leijen [8] in using innovative technologies in education. 
This could also provide good possibilities for self-regulated 
learning according to the open-ended inquiry approach [31]. 

IV.  CONCLUSION 

In conclusion, we found in our study that inquiry-based 
activities using robots in learning physics do improve 
learners’ inquiry skills and subject knowledge and skills, but 
the effect of this intervention is not higher compared to 
traditional teaching methods. This is valid, at least in case 
the students are not extensively guided. In addition, we 
found that the motivation of students is not increased just by 
using robots, primarily if they have used them previously in 
learning, and the novelty effect has been faded out. However, 
further studies are needed to understand in-depth how 
teachers’ activities in the classroom might have an effect on 
the usability of robots in education and how students’ 
thinking and awareness of the learning process could be 
improved in order to have a stronger effect on learning 
outcomes as well. 
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