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Abstract— The semi-parametric regression model combines parametric and nonparametric regression. However, non-parametric 
estimation may provide flexible solutions to the problems suffers by the regression model, but the problem of dimensionality that this 
estimator suffers, which occurs due to the increasing number of explanatory variables, still remain, this, in turn, may reduce the 
accuracy of the estimation process. Estimate the non-parametric part of the semi-parametric models that can be studied using 
conventional non-parametric methods such as the Spline Smoothing and Kernel Smoothing. However, there are other non-parametric 
methods that can be used, therefore, in this paper, the semi-parametric regression model was estimated by employing the wavelet 
estimate for the soft threshold, according to the "Speckman" method, and then comparing it with the two methods, Nadaraya-
Watson and Local Linear, through the implementation of simulation experiments that included different sample sizes and threshold 
values. The parametric part estimation of the partially linear model according to the least-squares method was not identical to those 
estimates using the Speckman method, that is because the least-squares method was not appropriate for the uneven nature of the 
number of weekly work hours. Simulation experiments have demonstrated the efficiency of the wavelet estimation method and its 
superiority over other methods. The above estimation methods were applied to real data related to the study of the production value 
for the public industrial sector in Iraq, and some factors affect it, such as the value of industrial supplies, the total wages of workers, 
and the number of workers. 
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I. INTRODUCTION 

Partially linear model (PLM) is a semi-parametric model 
which have a linear part represented by the parametric 
regression [1], [2], and a non-linear part represented by the 
non-parametric regression as a smooth function [3]. This 
model described mathematically with details in section 2. 
The importance of this model lies into two reasons, first 
reason is that it is more flexible than the parametric model 
because it combines both parametric and non-parametric 
components. Second reason is that it allows easier 
interpretation of the effect of each variable compared to a 
non-parametric regression that leads to overcoming the curse 
of dimensionality. 

Numerous researches have been prepared in this aspect 
based on different smoothing methods and techniques, 
among them [4], in which spline smoothing was used, 
piecewise polynomials method [5], a local linear method [6], 
[7], based on profile least square method. In the preceding 
techniques, conditions for the function m(z) such as 
continuity or continuity of its derivatives may not be 
satisfied in some areas like economic series with 
discontinuous points, image processing, and signal. Wavelet 
technique is an active natural extension of the various non-
parametric methods due to its adaptable ranges of unknown 

smoothness. Furthermore, it has many advantages practical, 
fast, and dull due to efficient algorithms [8].   

In this paper, we aimed to find the best smoothing 
technique that can be applied under the Speckman method 
for estimating the partially linear model. To satisfy this aim, 
we have compared three different smoothing techniques: 
Nadaraya-Watson (NW), local linear (LL), and wavelet by 
using simulation. Furthermore, we have applied the three 
mentioned techniques to real data about the production value 
and some factors affecting it for the public industrial sector 
in Iraq [9], [10]. 

The paper is arranged as follows; in section 2 we 
described with details the mathematical formula of the 
partially linear model, Nadaraya-Watson and Local linear 
smoothing were shown in section 3, section 4 deals with the 
wavelet transformation, a simulation experiment was 
summarized in section 5, in section 6 an applied study was 
summarized using the estimator methods under research. 
Finally, section 7 shows the conclusions. 

II. MATERIALS AND METHOD 

The relation between the dependent variable and the 
explanatory variables can be described in the partially linear 
model  
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A. Wavelet Transformation 

Wavelet transformation (WT) is a mathematical extension 
tool for Fourier method; it is one of the most advanced 
transformations in the field of signal processing, this 
transformation enables us to analyze the signal into a set of 
multiple levels solutions (Multiresolution) in both time and 
frequency [12]. The mechanism of (WT) can be summarized 
by using a variate width window to obtain the frequency 
changes throughout the wavelength. This variate window 
produces a limited length signal with zero average value 
called wavelet. The produced wavelet is compressed with 
two functions, the first is called mother function to get a set 
of coefficients called detailed coefficients, and the second is 
the measurement function (also called father function) to get 
the approximation coefficients. There are two types of (WT), 
Continuous Wavelet Transformation (CWT), and Discrete 
Wavelet Transformation (DWT). In this paper, we used the 
(DWT), [13], [14]. 

B. Wavelet Shrinkage 

Wavelet shrinkage is a way to reduce the signal noise, 
proposed a non-linear wavelet estimator for non-parametric 
function by reconstructed wavelet coefficients and scaling 
coefficients. The wavelet reduced by the threshold to 
transform the low-frequency signal to zero and keep the 
high-frequency signal close to zero. Mainly, there are two 
threshold types [15], [16]: 

1) Hard threshold: employed to reduce the wavelet 
coefficients that are smaller than the threshold value to zero, 
and keep the values that are greater than the threshold. 

2) Soft threshold function: different from the hard 
threshold by shrinking the values of the wavelet coefficients 
that are higher than the threshold. Threshold value must be 
chosen carefully, since the larger threshold value is caused 
by fuzzy transformation, and the smaller threshold value 
leads to no noise reduction. There are several methods to 
find the threshold value, among them the universal threshold 
[17], [18]. 

III.  RESULT AND DISCUSSION 

A. Discrete Wavelet Transformation (DWT) 

The Discrete Wavelet Transformation is a linear process 
performed on noisy data through two filters, the low-
frequency filters (scaling filter) and high-frequency filters 
(wavelet filter). The main points of the (DWT) can be 
described through Daubechies theorem. It is summarized by 
finding an accurate formula for the non-parametric function 
m(z) which is produced from both scale (low-frequency 
filter g ̃) ω(z) and wavelet (high-frequency filter h ̃) ∅(z) 
functions. It is done based on the vanishing moments which 
gives the approximation properties of wavelengths for these 
two functions, where many the vanishing moments will give 
better approximation functions. Also, the estimation that 
basis on a specified number of non-zero coefficients is better 
than the estimation for all coefficients [19][20], introduced a 
fast algorithm for (DWT) require the sample size n to be 2^J 
for some integer J, That is, double filters, Thus we start with 
function ∅_0 (z) until reaching to the ∅_n (z) as in the 

following formula, figure (1) shows the quick wavelength 
transform start with the scaling,[12]. 

 
Fig.1 The Filters with Mallat DWT 

B. Simulation 

Figure (2) shown these m(z)^, s functions. For the DWT 
we based on the Daubechies orthonormal compactly 
supported wavelet with 8 vanishing moments, also two 
threshold rules universal and cross-validation were carried 
out. Note that in the wavelets simulation both signal and 
noise must be measured at the same or equivalent points in a 
system, and within the same system bandwidth, so we select 
σ^2 to satisfy a fixed signal-to-noise ratio (SNR), it is 
merely the ratio of the sample standard deviation of the 
signal to the standard deviation of the added noise. 

 

 
Fig. 2 Nonparametric test functions m(z)^,s 
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TABLE I 
ROOT SQUARE ERROR (RMSE) FOR ESTIMATED PLM ’S 

M � ����� ����� 

�	
 

3 6 

���� ��
� ���� ��
� 

�� 

128 0.3556 0.4774 0.2234 0.1558 0.1417 0.1272 

256 0.2986 0.4085 0.1828 0.1158 0.1147 0.0704 

512 0.2488 0.3381 0.1432 0.0936 0.0893 0.0547 

�� 

128 0.2073 0.2524 0.1265 0.1043 0.0918 0.0910 

256 0.1765 0.2252 0.1043 0.0729 0.0699 0.0611 

512 0.1480 0.1948 0.0805 0.0522 0.0545 0.0342 

�� 

128 0.1951 0.2236 0.0879 0.0854 0.0678 0.0580 

256 0.1561 0.1907 0.0710 0.0676 0.0480 0.0429 

512 0.1211 0.1532 0.0531 0.0483 0.0346 0.0312 

�� 

128 0.0881 0.1195 0.0518 0.0466 0.0349 0.0291 

256 0.0727 0.0899 0.0452 0.0377 0.0298 0.0231 

512 0.0604 0.0695 0.0401 0.0316 0.0254 0.0187 

 
Through table (1) above, for all test functions and sample 

sizes, we found that the estimated values of RMSE for the 
wavelets smoothing were lower than of those values for the 
kernel smoothing, and its clearly that the lowest of those 
values were in the case of function M_4. Also we can notice 
that Speckman with cross-validation threshold ( 〖SP〗_CV) 
had the lowest values for RMSE, followed by the Speckmea 
with universal threshold (〖SP〗_UV). Whereas for the 
kernel smoothing at the M_1 and M_2 functions we can say 
that the values of  RMSE according to the 〖SP〗_LLRE 
were lower than these values for the 〖SP〗_NWE, while at 
cases of M_3 and M_4 the 〖SP〗_NWE was presented 
lower estimates for RMSE. Note that the RMSE values for 
all experiments decrease with increasing sample size.  

Furthermore, the RMSE values had decrease behavior 
with the increasing of SNR values. Figure (3) is represented 
the real and estimated wavelets curves for the best test 
function M_4 at n=128,SNR=3,9, we can be seen through it 
a little differences in smooth between UV,CV thresholds 
rules when SNR=9, but at SNR=3 we can clearly noticed the 
preference smoothing of the CV especially in the top and in 
the right lower in each curve. Through figure (4) which 
showing comparison between the real M_4 curves and their 
kernel estimators at n=128, the real and estimated 
differences are expanded, but overall the  M ̂_NWE, 
M ̂_LLRG are looking nearly to the real curve, while the 
smoothing looking far in the left bottom, top and in the 
middle of the right side in each curve. 

 

Fig.3 Wavelets smoothing for M_4 function when n=128, SNR=3,9 
 

 
Fig.4 LL & NW smoothing for M_4 function when n=128 

C. Application 

In this part, we used the PLM in modeling the 
relationships between the industrial production value for the 
public sector companies in Iraq, as a response variable (Yi), 
and three explanatory variables, The value of production 
inputs (X1i), the number of employees (X2i), and the 
number of weekly working hours (Zi). Note that the two 
variables X1i and X2i represented the parametric part and, 
Zi represent the nonparametric part. Depending on the real 
data about the variables under research we applied the two 
wavelets shrinkage approaches (UV,CV). All the variables 
were transforming into standardize form because they were 
measured in different units. To estimate the model, we must 
first find the preliminary estimates for β_1, β_2 by using 
ordinary least square, we found that β_1=-0.116, β_2=0.113. 
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Fig.5 Function of the weekly working hours 

 
Then by using M_4 test function and each 〖SP〗_CV, 

〖SP〗_UV, 〖SP〗_NWE and 〖SP〗_LLG, thus we get 
the following parametric estimators for PLM in table (2). 
Also we plotted the m ̂〖(z_i)〗^,s for the four Speckman 
estimators as in figure (6), which show us that 〖m ̂(z_i)〗
_CV gives a very close smoothing to the real test function, 
followed respectively by 〖m ̂(z_i)〗 _UV, 〖m ̂(z_i)〗
_NWE and 〖m ̂(z_i)〗_LLG.  

 
 

TABLE II 
SPECKMAN PLM ESTIMATION 

 Method �� �� 

��
� -0.1018 0.0959 

���� -0.1131 0.0912 

����� -0.0822 0.1246 

����� -0.1054 0.1657 

 
The four 〖 PLM〗 ^,s Speckman estimators of the 

industrial production variable are explained in figure (7), 
those estimators plots refers to a great match between 〖SP〗
_CV and real variable, this matching is declines gradually 
according to the remaining three estimation methods as 
following order 〖SP〗_UV, 〖SP〗_NWE and 〖SP〗
_LLG,  where 〖SP〗_NWE and 〖SP〗_LLG are gives 
noisy smooth curves. 

 
Fig.6 Weekly working hours 
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Fig.7 Speckman estimators for the industrial production value 

 
 

IV.  CONCLUSIONS 

The wavelet smoothing approach for the partially linear 
model works well under suitable signal to noise ratios. The 
piecewise polynomial test function gives an accurate 
description of asymmetric spaces data. The non-parametric 
variables have a most considerable role in the estimating of a 
partially linear model the nonlinear functions have the 
primary effect that is controlling the nature of the response. 
In estimating the partially linear model specifically is the 
cause of the case of nonlinear functions that did not belong 
to the wavelet family. Nadaraya-Watson method and the 
Gaussian kernel function respectively should provide more 
accurate estimates than the local polynomial method, vice 
versa in the case of signal functions that belong to the 
wavelet family, that is, the local polynomial regression and 
Epanechnicov kernel function give more efficient estimates 
of Ndaraya-Watson and the Gaussian kernel function 
respectively. 

The behavior of the industrial production value for the 
studied public sector companies in Iraq have an upward 
slope in the first weeks; then it declined sharply in the 
middle of the period, then to be stable at the lowest level, 
this is the reason that prompted to use the piecewise 

polynomial which depends on the dividing the period into 
three individually modeled regions. The results of the 
estimation showed the negative effect on the value of 
production inputs, while the positive effect of the number of 
workers on the value of production. The parametric part 
estimation of the partially linear model according to the 
least-squares method was not identical to those estimates 
using the Speckman method, that is because the least-
squares method was not appropriate for the uneven nature of 
the number of weekly work hours. 
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