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Abstract— The early detection of faults in rotating systems considers an integral approach that has received considerable attention 
from the industrial sector, as it contributes to preventing catastrophic failures in machines. In this research, the natural frequencies 
of a shaft, when it is healthy and when cracks with different depths are introduced, have been calculated. The deviation of the 
computed natural frequencies from the healthy ones is counted as a sign of the presence of an abnormality in the system. For this 
intention, the finite element analysis (FEA) method based on ANSYS software has been utilized to obtain the first five natural 
frequencies of the shaft when there is a crack of different severity at different positions. The results of the FEA are used for designing 
an artificial neural network (ANN) model that can be easily used to predict the first five natural frequencies of the shaft based on just 
the crack’s position and depth. Finally, the predicted natural frequencies by the deigned ANN have been compared to their peers that 
were computed using the FEA method. The absolute error percentage has then been calculated and used to get an indication of how 
close the result of both techniques is. The recorded highest error percentage was 0.67%, which is quite small and referring to that the 
designed ANN can accurately predict the natural frequencies of rotating systems. 
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I. INTRODUCTION 

Detection of cracks in shafts represents one of the most 
reliable fault diagnosis methods, as it helps in preventing 
catastrophic failures from taking place [1, 2]. Thus, many 
techniques have been developed to predict the occurrence of 
cracks in shafts; for instance, Shen and Taylor [3] introduced 
a method for simple crack identification in a beam with one 
pair of symmetric cracks. The introduced method is 
proposed for an on-line and non-intrusive damage detection 
technique for vibrating systems. However, interesting work 
was conducted to detect the added ice mass on wind turbine 
blades [4]. The change in the blade natural frequencies due 
to the added mass was considered for this purpose. The 
blade was experimentally simulated as a cantilever beam, 
and the experimental modal analysis was performed on it. 
The extracted results were utilized for training an artificial 
neural network (ANN) model that is designed for estimation 
of how much added mass. In another paper, the researchers 
have studied the crack properties and effect of their 
variations on the natural frequencies of beams [5]. An 
experimental database was used to design and train an ANN 
to predict the crack location and depth. The input to the 

ANN was the natural frequencies, whereas the crack depth 
and location were the output of the ANN. The obtained 
ANN result was verified with experimental results, and high 
agreements between them were found. Also, Dahak, et al. [6] 
have investigated the effect of cracks on the natural 
frequencies of beams. A finite element model of Euler–
Bernoulli was presented with a damaged element. 
Concerning the damaged element, the stiffness matrix was 
calculated based on the theories of fracture mechanics, as the 
inverse of the flexibility matrix. It was shown that the crack 
could be located based on the correlation between the shape 
of the measured frequencies with those obtained by the finite 
element method. The integrity of the presented method was 
conducted using ANSYS APDL and experimental tests. The 
results showed that the predicted values were close to the 
correct ones with an error of less than 1.5% for localization 
and less than 10% for the quantification.  

Al-Shudeifat and Butcher [7] investigated the effect of 
crack depth on the vibration amplitudes of a rotor-bearing-
disk system. Two crack models were presented, which are 
the open and breathing crack models. Two solutions were 
derived for both cracks type, finite element models, and 
general harmonic balance. The higher vibration amplitudes 
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at the backward whirl appear at the earlier crack depth than 
those at the forward whirl for both models of cracks. It was 
noticed that the resonance peaks at the second, third, and 
fourth sub-harmonic frequencies emerge as the crack depth 
increases. Moreover, Gounaris, et al. [8] presented a method 
to determine the crack depth and location for a transverse 
surface crack in a beam. The crack was simulated as a local 
compliance matrix of six degrees of freedom. To excite the 
beam, a harmonic force or moment with a known amplitude 
was employed, where the first measurements were taken in 
the direction of excitation. In contrast, the other 
measurements were obtained in the direction where the 
coupling effect due to occurring of crack. It was noticed that 
at small cracks, the direct response was minimal, while the 
coupled response changes substantially to detect the small 
cracks. Similarly, the transverse vibration of a clamped 
beam with transverse crack was modeled for the aim of 
studying the effect of crack parameters, such as the relative 
crack’s position and depth, on the natural frequencies of the 
beam [9]. The modeling procedure was done using the finite 
element and neural network techniques. The theoretical 
findings were validated with experimental results, and high 
compatibility between them was found.  

In terms of crack shape effect, Gounaris and 
Papadopoulos [10] developed a circular cracked element that 
has 12 coupled degrees of freedom for a Timoshenko shaft 
considering the effects of the gyroscopic moments. The 
proposed analysis was utilized to develop an identification 
technique for crack depth and location. The method was 
based on measuring the coupled vibrations in rotating shafts 
that are caused by a single excitation in bending direction 
while measuring in the axial direction. Also, Orhan, et al. 
[11] introduced a new crack model, unlike the commonly 
known V-shape crack. The study carried out using the free 
vibration analysis of an orthotropic cracked cantilever beam. 
The effect of crack depth on natural frequency was 
investigated both numerically and experimentally for both 
the new model and the V-shape model and compared with 
each other. It is concluded that the results were not sensitive 
to crack geometry change. The natural frequencies decrease 
with increasing the crack depth. The error between the finite 
element model and the experiments varies between 22% to 
39% due to the structural instability that is caused by the 
higher crack length. Deokar and Wakchaure [12] presented a 
method for detecting an open crack type in a slender 
Bernoulli beam. Experimental modal analysis (EMA) on 
cracked and healthy beams was performed to measure the 
first three natural frequencies to be considered as a 
fundamental criterion for crack detection. 3D graphs of 
normalized frequency in terms of crack depth and location 
were plotted to locate the crack. A case study was presented 
to demonstrate the applicability and efficiency of the 
suggested method.  

Generally, the presence of a crack in a rotating shaft 
makes it weaker and unsafe, and it may propagate to 
complete fracture leading to a catastrophic failure. Thus, 
crack detection using non-destructive techniques provides a 
route for avoiding catastrophic failure due to this common 
fault type. This study measures, using ANSYS software, the 
dynamic response of a full-scale shaft when different crack 
depths and locations are simulated to determine the shaft's 

natural frequencies and associated mode shapes. Then, the 
ANN will be used to develop an artificial system that can be 
able to estimate the natural shaft frequencies based on cracks 
information (depth and location). ANSYS outputs are going 
to be utilized for training the proposed ANN. However, for 
future work, an electronic system could be designed for 
automatic shaft fault detection [13].  

II. MATERIAL AND METHOD    

This section discusses the performed finite element 
analysis (FEA) and how it can be implemented in ANSYS to 
analyze the considered shaft as a case study. Then, the ANN 
technique is presented; based on the finite element result, an 
appropriate ANN were designed.  

A. Finite Element Modelling 

In this paper, the model chosen to be analyzed is a simply 
supported beam of length �. ANSYS software was utilized 
to model a circular cross-section beam with a transverse 
open crack of depth � at a variable position �, as shown in 
Figure 1. 

 
Fig. 1 Geometry of the cracked beam with crack section 

 
The beam is divided into two parts connected by a spring 

(open crack). Each part is also divided into finite elements 
with two nodes and three degrees of freedom (DOF) at each 
node in the XY plane, as illustrated in Figure 2. 

 

 
Fig. 2 The finite element model of a cracked beam 

 
In ANSYS, the BEAM4 element is used to model these 

finite elements, which is a uniaxial element with six degrees 
of freedom at each node, which are translations and rotation 
in the x, y, and z directions of the nodal. The effect of the 
crack is modeled as a cracked massless finite element node 
with zero length. Equivalent flexibility coefficients have 
represented the crack stiffness matrix. The flexibility 
coefficients ���  are obtained from a fracture mechanics 
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method that is proposed by Papadopoulos and Dimarogonas 
[14]. The dimensionless flexibility coefficients are 
calculated numerically and plotted in Figure 3. The 
flexibility coefficients matrix can be written according to the 

displacement vector ( zyx uu θ,, ) as in [15]: 

 �=	�

 0 �
�0 �

 0��
 0 ���
�

���
 (1) 

 

Fig. 3 Dimensionless crack flexibilities versus crack depth ratio [15] 
 
The stiffness matrix of the nodal element is deduced 

based on the inverse of the above flexibility matrix (��
). 
Hence, the stiffness matrix of the cracked nodal element can 
be written as: 

 ��� = � ��
 ���

���
 ��
 ���� (2) 

Although ANSYS is a standard tool for finite element 
analysis, it is similar to much other software that does not 
have a specific element for modeling a cracked nodal 
element. In ANSYS, the MATRIX27 element is available 
and may be utilized for modeling the cracked nodal element. 
The geometry of this arbitrary element is undefined, but its 
mechanism can be specified by stiffness, damping, or mass 
matrix. The matrix is presumed to be related to two nodes, 
and each node has six degrees of freedom, which are 
translations and rotation in the nodal’s x, y, and z directions. 

B. Artificial Neural Network 

The main idea of the artificial neural networks is to 
produce a generalized, nonlinear mapping between input and 
output data sets. Generally, ANNs composed of input and 
output layers and at least one hidden layer. The number of 
hidden layers depends on how complicated the relationship 
is between the input and output data sets. A supervised feed-
forward multilayer perceptron (MLP) (Figure 4), which is a 
typical type of multilayer ANNs, has been employed in this 
research. The input to the network is referred to as �
, �
, … . . , ��; the output from the hidden and output layers 
are referred to as   and ! , respectively. The weights 
matrixes that connect between the input and hidden layers 
and between the hidden and output layers are denoted as "�� 
and "�#, correspondingly. To calculate the output from the 
hidden layer and output layer, let $, %, and & represent the 

number of neurons in the input, hidden and output layers, 
thus [16]:  

  � = '(∑ "����*
  �� + ,�- ,   . = 1, 2, … … . . , % (3) 

 

 !# = '(∑ "�#0�*
  � + ,#- ,   & = 1, 2, 3, 4, 5 (4) 

 
Where '  is the activation function, ,�  and ,#  are the 

threshold values to the neurons of the hidden and output 
layers, respectively. 

 
Fig. 4 Architecture of a multilayer perceptron network [16] 

 
The designed MLP in this research is composed of three 

layers, which are input, hidden, and output layers, 
respectively. However, the neurons in the input and output 
layers depend on the parameters in the input data set and 
what is required to get from the network. Here, the network 
has two inputs, which are the crack position on the shaft and 
the crack depth ratio, and five outputs, which are the first 
five natural frequencies. The number of neurons in the 
hidden layer depends on a trial and error procedure. 
Moreover, the neurons contain a linear or nonlinear 
activation function. Commonly, a linear activation function 
is used in the input and output layers. In contrast, nonlinear 
ones are used in the hidden layers. Sigmoid activation 
function, which is presented in Equation 5 below, is used in 
the hidden layer.  

 '(4) = 


5678 (5) 

To train the ANN, firstly, the input data are forwardly 
propagated. Then, the evaluation of the difference between 
the predicted (!# ) and expected (9# ) output is conducted 
using Equation 6 to obtain the square error value. The error 
value is then backpropagated, and hence the weights 
between layers are got corrected based on the gradient 
descent method.  

 : = 


 ∑ (9# � !#)
0#*
  (6) 

C. ANN Design 

To design an appropriate ANN, the back-propagation 
training algorithm has been implemented using the neural 
network toolbox under the Matlab environment. To start the 
training process, the weights are randomly initialized. The 
input data (crack location and crack depth ratio) are then 
supplied to the input layer and consequently are passed to 
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the hidden layer after being multiplied with the first weight 
matrix ("��). In the neurons of the hidden layer, the values 
that come from the multiplication step are summed and 
passed through the sigmoid activation function to obtain the 
output vector of the hidden layer. This vector is then 
multiplied with the second weights matrix ("�#) and passed 
to the output layer to predict the first five natural frequencies. 
After that, the error value is computed by comparing the 
predicted and target patterns. The training will be terminated 
if the error is within the specified limit; otherwise, the error 
is propagated backward to get the weights updated using as 
suitable training algorithm, such as the Quasi-Newton 
algorithm, Levenberg-Marquardt algorithm, etc. The above 
steps are then repeated until the error becomes within the 
specified limit, or the specified number of iteration is 
reached. After the training is appropriately completed, the 
network has to be tested using not previously seen data for 
validation purposes. 

In this research, many ANN models have been tested. In 
each model, a different number of hidden layers with various 
numbers of neurons were used. Also, different training 
algorithms have been tried and compared based on the mean 
square error (MSE) value and correlation factor. However, 
the established best ANN contains one hidden layer with 25 
neurons (Figure 5). The found best training algorithm is 
Levenberg-Marquardt (trainlm), which led to less MSE 
(Figure 6) with a correlation factor of 0.998. 

 
 

 
 

Fig. 5 The obtained best ANN design  
 

 
Fig. 6 The obtained best ANN design 

III.  RESULT AND DISCUSSION 

The shaft has been represented as a simply supported 
beam having a length (�) of 500 mm, a diameter (;) of 20 
mm. Its modulus of elasticity, Poisons ratio, and density are 
70 Mpa, 0.3, and 2700 kg/m3, respectively. A V-shaped 

crack has been considered on the beam; the ratio of crack 
depth to shaft diameter (�/;) is varied from 0.02 to 0.5 in 
steps of 0.0125. This means that the maximum crack depth 
is 10 mm, which equals half of the shaft diameter, as in the 
actual situations, it is anticipated that the shaft will get 
broken if the crack depth becomes more than the shaft radius. 
The variation in the crack position relative to one of the ends 
was from 50 mm to 450 mm in steps of 50 mm. The purpose 
of varying the position and depth of the crack is to study the 
dynamic behavior of the shaft under different crack 
configurations. However, the existence of crack on the shaft 
leads to change its stiffness. The main assumptions here are 
the crack is always fully opened, and the shaft is stationary. 
The first five natural frequencies of the healthy and cracked 
(faulty) rotor that are related to each crack to depth ratio 
were obtained.  

The variation of the first five natural frequencies is 
presented in Figure 7 on which the natural frequencies of the 
healthy shaft (=> ) are indicated. It can be noticed that in 
Figure 7a, the first natural frequency starts decreasing as the 
crack get far from the fixed end, and it reaches its minimum 
value at the center of the shaft. However, it starts increasing 
beyond the center of the shaft until it reaches its maximum 
value at the other end.  For the second to the fifth modes in 
Figure 7b to Figure 7e, it can be seen that an alternative 
variation in the natural frequencies as they are decreased to 
their minimum values and then increased back to their 
maximum value. This leads to producing sinusoidal curves 
that are denoted as the natural frequency curves [17]; these 
sinusoids are double, triple, quadruple, and quintuple for the 
second, third, fourth, and fifth modes, respectively. 

In all the figures mentioned above can be inferred that 
almost always the healthy natural frequencies do not get 
affected when the crack depth ratio is 0.02 and for all the 
considered different crack positions. Also, a slight 
change/decrease in the natural frequencies can be noticed 
when the crack depth ratio is in the range between 0.1 and 
0.25. These findings are identical with what was found by 
Hamidi, et al. [18], who was mentioned that the rate of 
change in the natural frequencies could be detectable only 
when the crack depth ratio gets more significant than 0.3. 
However, in Figure 7, the changes in the natural frequencies 
become apparent when the crack depth ratios are higher than 
0.25 that can be related due to reduce the shaft stiffness and 
thus its natural frequencies as more material is removed 
from it when the crack depth gets increased [19].  

To validate the designed ANN, a dataset that has not 
previously been used in designing the ANN is utilized. This 
dataset contains the first five natural frequencies of the shaft 
for the different crack to depth ratios (�/; ) at various 
positions (?) on the shaft. The obtained validation results are 
shown in Table I, where ? and �/; are presented in the first 
row and the first column of Table I, respectively. The 
obtained natural frequencies from the ANN are compared 
with their peers that were found from FEA using ANSYS 
software. The absolute error percentage (AEP), which is 
calculated using Equation 7 [20], is used to get an indication 
of the difference between the results.’ 

 @:? = |BCD E6FG0H�DII E6FG0H|
BCD E6FG0H   (7) 
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 However, the most considerable error percentages at 
different ?  and �/;  are highlighted in the table for each 
crack position. However, the highest AEP value that can be 
noticed is equal to 0.67 when the crack at ? = 0.15  and �/; = 0.4 at the second natural frequency. Generally, it can 
be inferred that all the error percentages for the different 
crack configurations are less than 1%, which is an excellent 
indication that the ANN can predict the natural frequencies 
of the shaft correctly.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 7 The obtained first five natural frequencies based on FEA using 
ANSYS software 

IV.  CONCLUSION 

In this paper, the possibility of using the change in the 
natural frequencies of a rotating system in the detection of 
abnormal health state was investigated. An intelligent model 
based on the feed-forward back-propagation artificial neural 
network (ANN) was designed. For this purpose, finite 
element analysis (FEA) was considered for modeling a 
stationary rotating shaft, and ANSYS software was utilized 
for conducting the FEA. The length and diameter of the 
modeled shaft are 500 mm and 20 mm, respectively. On the 
shaft, various crack severities at different positions were 
simulated, and the shaft five fundamental frequencies were 
obtained.  It was observed that the shaft’s natural 
frequencies are decreased, in comparison to the frequencies 
of the healthy shaft, as the crack depth is increased.  

The FEA results were employed for training and then 
testing the ANN. The neural network toolbox based on 
Matlab 2016 was employed for ANN design. The designed 
ANN is composed of three layers, input, hidden, and output, 
with two and five neurons in the input and output layers and 
25 neurons in the hidden layer. The inputs to the ANN 
model are the crack position and ratio of crack depth to the 
shaft diameter. The ANN outputs are the first five natural 
frequencies of the system. To validate the ANN results, a 
comparison with the finite element results was performed, 
and the absolute error percentage was calculated. The 
deviation between the neural network and finite element 
results was not significant, indicating that the designed ANN 
can confidently be used for predicting the natural 
frequencies of rotating systems.  
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TABLE I  
PREDICATED AND COMPUTED NATURAL FREQUENCIES BASED ON ANN AND FEA 

 

 

a/D
    P 

0.05 0.15 0.25 0.35 

FEA ANN 
AEP 
% 

FEA ANN 
AEP 
% 

FEA ANN 
AEP 
% 

FEA ANN 
Error 

percentage 
% 

First natural frequency 
0.1 160.98 160.95 0.018 160.7 160.6 0.062 160.52 160.32 0.124 160.7 160.6 0.062 

0.2 160.71 160.85 0.087 158.9 159.14 0.151 157.82 157.75 0.044 158.9 158.98 0.05 

0.3 160.28 159.99 0.180 156.1 156 0.064 153.71 154.23 0.338 156.1 156.11 0.006 

0.4 159.2 158.94 0.163 149.59 148.63 0.641 144.61 145.14 0.366 149.59 148.97 0.414 

Second natural frequency 
0.1 639.83 640.14 0.048 638.72 639.6 0.137 640.52 641.20 0.106 638.72 638.23 0.076 

0.2 636.03 635.63 0.062 629.33 628.83 0.079 640.51 641.14 0.098 629.33 629.65 0.05 

0.3 629.92 630.65 0.115 615.66 616.19 0.086 640.49 639.54 0.148 615.66 617.31 0.268 

0.4 614.93 613.64 0.209 588.06 584 0.69 640.46 639.82 0.099 588.06 586 0.35 

Third natural frequency 
0.1 1426.3 1425.4 0.063 1428.7 1426.7 0.139 1424.8 1423.16 0.115 1428.7 1429.17 0.032 

0.2 1410.6 1411.72 0.079 1426.5 1428.19 0.118 1402.1 1401.17 0.066 1426.5 1427.24 0.051 

0.3 1386.1 1388.86 0.199 1423.3 1422 0.091 1369.9 1373.84 0.287 1423.3 1421.56 0.122 

0.4 1330.3 1324.04 0.47 1417.2 1417.37 0.011 1307.2 1312.75 0.424 1417.2 1416.85 0.024 

Fourth natural frequency 
0.1 2508.7 2505.86 0.113 2512.9 2511.55 0.053 2515.5 2517.31 0.072 2512.9 2509.54 0.133 

0.2 2472.3 2473.4 0.044 2499 2501.41 0.096 2515.3 2515.83 0.021 2499 2501.62 0.104 

0.3 2419.3 2421.12 0.075 2478.4 2476.69 0.068 2515.1 2514.48 0.024 2478.4 2480.52 0.085 

0.4 2315.5 2308.76 0.291 2436.7 2431.4 0.2175 2514.6 2512.4 0.087 2436.7 2431.43 0.216 

Fifth natural frequency 
0.1 3879.6 3876.1 0.09 3879.6 3882.78 0.082 3879.6 3876.76 0.073 3879.6 3879.65 0.001 

0.2 3821.5 3824.07 0.067 3821.6 3817.42 0.109 3821.6 3816.75 0.126 3821.6 3822 0.0104 

0.3 3744.7 3744.09 0.016 3744.3 3749.17 0.13 3743.7 3750.04 0.169 3744.3 3750.81 0.173 

0.4 3618.4 3615 0.093 3612.1 3601 0.307 3608.3 3626.90 0.515 3612.1 3603.4 0.2408 
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