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Abstract—This article proposed the Modified Structural Quasi Score (MSQS) estimators for Poisson regression parameters when a

covariate is subject to measurement error. We study the situation when the true covariate in the Poisson regression model is unobserved, 

and the surrogate for this covariate is related to the true covariate by the additive measurement error model. We assumed that true 

covariate as a random variable with unknown density function distribution and its observable values as surrogates, which also has 

Poisson distribution. We applied the Empirical Bayes Deconvolution (EBD) method for estimating the true covariate density with a 

finite discrete support set. To estimate Poisson regression parameters, we construct an MSQS estimating equation based on proper 

functions for the mean and variance of the Poisson distributed surrogate. The MSQS estimator for the Poisson regression parameter is 

the root of the quasi-score function based on the quasi-likelihood method. We did some simulation scenarios for assessing the MSQS 

estimator by assuming the true covariate comes from Gamma distribution as a conjugate before Poison distribution.  We compute the 

standard error of the mean, standard deviation, and bias of the MSQS estimator for various sample sizes to examine the estimator's 

appropriateness. The simulation showed that a combination of the finite discrete support set of surrogates based on the range values 

and smaller-scale parameter of Gamma distribution yields smaller values of bias estimator and the estimated standard deviation.  
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I. INTRODUCTION

The Poisson regression model is one of the generalized 

linear models used for analyzing count data where the 

response variable is a non-negative integer [1]-[5]. This 

model is relevant for the analysis of count data in social and 

natural sciences, such as infometric [6], transportation [7], 

insurance [8],  predictors of length of stay among HIV 

patients [9] and other application. In the Poisson regression 

model, the response variable � has a Poisson distribution with 

a rate parameter �  that depends on a covariate �: log � �

 � ��  and the regression parameters 
, ��  are

needed to estimate. In this article, we restrict to the case of 

one unobserved covariate � measured by error, and we called 

it surrogate �.  If covariate � is measured without error and 

Poisson regression parameters are produced by maximum 

likelihood (ML) estimation, it will be consistent and 

asymptotically efficient. However, if a covariate is measured 

with error, the ML estimator ignoring the covariate 

measurement error will lead to inconsistent estimators and 

bias. In this article, we consider the case event count as the 

response variable, and we work with unobserved covariate �
measured with error. Because � it is an unobserved covariate, 

we use observable covariate � as a surrogate, and it modeled 

via additive measurement error model, � � � � �, where �
is measurement error and independent of 
�, ��  and

identically distributed samples from a known density. Many 

methods have been proposed and mostly depend on the 

distribution of  � is known [10]–[13]. However, the methods 

do not utilize the distribution of covariate �measured with 

error (functional measurement error) [14]-[18]. 

In contrast to the functional measurement error model, 

structural measurement error assumed � is a random variable 

and has distribution. If this distribution can be specified 

parametrically, it is possible to calculate them directly. We 

can get the conditional distribution of �  given �  as the 

posterior distribution if we get the prior distribution of � , 

denoted by �
��. We used the Empirical Bayes
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Deconvolution (EBD) method proposed by Efron [9] for 

estimating the density �
�� of � using surrogates �. In EBD 

methods, �
��  is an unknown prior density that has 

realizations ��,  ��, … ,  �� is unobservable. Each �� produces 

a surrogate �� according to a known probability density such 

as Poisson distribution, ��~�������
���.  We use 

deconvolution for estimating �
��  from the surrogate 

�� ,  �� , … , ��. Many literature studies on the deconvolution 

problem, as in Efron [9] which focus on the additive 

measurement error model. The Bayes deconvolution problem 

proposed by Efron [9] use likelihood approach with the prior 

density �
�� belongs to an exponential family of densities on 

the space-� , denoted by  .  The support set   is a finite 

discrete set,  � 
��, ��, … , �!�, so the prior �
��  is a � -

vector " � 
��, ��, … , ���  which specifying probability �# 

on �# , $ � 1, … , �. 

If the measurement error was ignored, it could lead to 

inconsistent estimators of the regression coefficients, and we 

need another method for estimating the regression coefficient. 

Many statistical methods are proposed for estimating a 

parameter of a regression model with covariate measurement 

error such as [19]–[29], especially for a Poisson regression 

model with covariate is subject to measurement error [19], 
[23], [24]. The quasi-likelihood method for Poisson 

regression models with covariate contains measurement error 

required posterior distribution of the unobserved covariate � 

given the observed covariate �.  Structural Quasi Score (SQS) 

estimators for Poisson regression parameter was one of the 

estimators in Poisson regression where covariate contains 

measurement errors, but in [19] and [23], �  and �  have a 

normal distribution.  

In this article, we also use the assumption of the non-
differential measurement error, which means that the 

conditional distribution of �  given �  is independent of 

�: &'|),* � &'|) .  This paper proposes a quasi-likelihood 

method for modeling count data by the Poisson regression 

model when one covariate is measured with error, and we 

called it a modified SQS estimator. We modified the quasi-

score estimator proposed by Efron [14] for estimating the 

regression coefficient of the Poisson regression model. First, 

we estimated the density of unobserved covariate as the prior 

density of Poisson distributed surrogate by the EBD method. 

After getting the probability estimation for every 

discretization in support set of an unobserved covariate, we 

constructed the quasi-score function based on the mean and 

variance function of the Poisson surrogate. 
This paper is organized as follows. In Section 2, we derive 

the quasi-likelihood approach for the Poisson regression 

model proposed by Efron [14] with measurement error in one 

covariate �. We compute mean and variance function from 

the observed sample ��  when the unobserved covariate �� 
measured with errors by finding the roots of the quasi score 

estimating equation. Section 3 proposed a modified SQS 

estimator for the Poisson regression parameter by 

constructing a new quasi score function with mean and 

variance functions from the prior density estimate of � given 

� by the EBD method. Some simulation studies are carried 

out to assess the performance of the proposed estimator. The 

conclusion is given in Section 4. 

 

II. MATERIALS AND METHOD 

A. Poisson Regression with Covariate Measurement Error 

In a Poisson regression model, the response � has Poisson 

distribution with a parameter � � �
�, 	� � ��+
	
 � 	��� 

that depends on one covariate �  measured with error as 
described in [10] and [14]. Let a sample observation of i.i.d 

pairs 
�� ,  ���, � � 1, … , �  , the parameters 	
  and 	�  are 

estimated by the maximum likelihood method with the log-

likelihood function of 	: 
 ,
	� � ∑ .�� ln �
�� , 	� − �
�� , 	�1��2�  (1) 

and derive to the estimating equation. 

 ∑ 3�� − ��+4	5
 � 	5���67
1, ���8��2� � 0  

If covariate �� is measured with error, we use a surrogate �� 
which modeled in additive measurement model such that 

 �� � �� � �� (2) 

where ��  is the measurement error, independent of 


�� , ���, and we assume normally distributed  ��~:
0, ;<�� 
with known variance or can be estimated from independent 

replications of �� . As in the measurement error model, we 

assume the structural measurement error model, so we treat 

covariate � as a random variable and distribute probability. 

Kukush et al. [23] assumes that ��~:
=> , ;>�� , and by 

conditioning on �, the SQS estimator is constructed which is 

consistent and it has derived from the quasi-likelihood method. 

The quasi-likelihood approach requires the specifications of 

the mean and variance function for the Poisson regression 

model. According to Thamerus [19], the first step to  obtain a 

quasi-likelihood model in the observable variable is to set up 

the unobservable mean and variance function as the 

distribution of ��  given �� and define two conditional 

moments as the function:  

  ?
��|��� � =
�� , 	� � �@AB@C)D (3) 

 EFG
��|��� � ;�
�� , 	� � �@AB@C)D (4) 

where 	 is the vector of the Poisson regression parameters. 

Mean and variance function for the surrogate 

 ?
��|��� � H
�� , 	� 

 EFG
��|��� � E
�� , 	� 

then a quasi-likelihood model in the surrogate defines as 

H
�� , 	� � ?
?
��|�� , ���|��� � ?
=
�� , 	�|��� �
?4�@AB@C)D|��6 � �@A . ?4�@C)D|��6 

E
�� , 	� � EFG
?
��|�� , ���|��� � ?
EFG
��|�� , ���|��� 

� EFG
=
�� , 	�|��� � ?
;�
�� , 	�|��� 

 � EFG4�@AB@C)D|��6 � ?4�@AB@C)D|��6 (5) 

We know that 

EFG4�@AB@C)D|��6
� ? I4�@AB@C)D6�|��J
− 3?4�@AB@C)D|��67�

 

� ?3��@AB�@C)D|��7 − 3�@A . ?4�@C)D|��67�
 

� ��@A . ?3��@C)D|��7 − 3�@A . ?4�@C)D|��67�
 

then  

 E
��, 	� � ��@A . ?4��@C)D|��6 − 3�@A . ?4�@C)D|��67� � �@A . ?4�@C)D |��6 (6) 

From equation (6), we have to get the conditional 

distribution of ��  given ��  for compute expectations of the 
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form ?
�K)D|���  and derive expressions or H
�� , 	� , and 

E
�� , 	�. Because we use a structural additive measurement 

model in equation (2), we will compute the conditional 

distribution of �� given �� as posterior distribution when the 

distribution of ��  is known using the empirical Bayes 

deconvolution method proposed by Efron [9]. Kukush et al. 

[14] give an unbiased estimating equation as the quasi score 

function: 

 ��
	� � ∑ ��
	���2� � ∑ 'DL!
*D,@�
M
*D,@� . N!
*D ,@�

N@
��2�  (7) 

The SQS estimator for the Poisson regression parameter 

O � 
	
, 	�� is defined as the root of the quasi score function 

�
	� � 0.  For finding the root, we differentiate the mean 

function H
�� , 	�  with respect to 	
  and 	�  estimation is 

carried out by solving �
	� � 0  as a nonlinear equation 

system in 	
 and 	� numerically. 

B. Empirical Bayes Deconvolution Method 

Let an unknown prior density �
��  has an observed 

independent random sample of realizations X�, … X�:   
 ��,  ��, … ,  ��~�
�� (8) 

Each X�  independently produces an observed random 

variable �� as a surrogate with known probability densities 

for �� given X�: 

 ��|��~+
��|��� � �������
���, � � 1, … , � (9) 

The EBD method can be used for estimating the prior 

density �
�� using sample observation �� , … ��. The EBD 

method is an estimation procedure �
��  based on sample 

observations from &
Q� by using a likelihood approach to 

EBD problems with prior �
��, which is modeled through 

exponential family density in space-�, denote by Τ. Support 

set T is assumed to be a finite discrete support set, and T is 

discretized as many points as �� , and we consider it as a 

surrogate of unobserved ��: 
 X ∈ T � S�
��, �
��, . . , �
��T  

The prior distribution �
�� is an n-vector " � 
��, … ,  ��� 

which specifies the probability �# on �#  and modeled as an 

exponential family of densities on T, 

 � � �
U� � ��+VWU − X
U�YX
U� � ,�� ∑ ��+�#2� SW#ZUT 
10� 
where U � p-dimensional vector and W � known � × + 

structure matrix. The-j component of �
U�: 

 ��
U� � PrSX � �
��T � ��+SW#ZU − X
U�T, $ � 1, . . , � (11) 

Define +�# � +�4��|X� � �
#�6  and denote ��  as n-vector 

�� � 
+��, … , +���Z, then the marginal probability for ��: 

 &�
U� � ∑ +�#�#
U��#2� � ��Z�
U� 

For the maximum likelihood estimation, the loglikelihood 

function for the vector parameter  U � 4U�, … , U^6Z
is: 

 ,�
U� � ,��&�
U� � ,����Z�
U�  
with p-dimensional first derivative vector and + × + - 

dimensional second derivative matrix  

 ,_̀
U� � a… , NbD
c�
Ncd

, … eZ ,    ,_f 
U� � a… , NgbD
c�
NcdNch

, … e  

For ��  with �  observation, the total loglikelihood ,
U� �
∑ ,�
U���2�  has first and the second derivative is:  

 ,
̀U� � ∑ ,�̀
U���2� � WZ ∑ i�
U���2� � WZiBU  
where 

i�
U� � Vj��
U�, … , j��
U�YZ  

j�#
U� � �#
U� k +�#
&�
U� − 1l 

and 

 −,_f 
U� � WZ.i�
U�i�
U�Z � i�
U��
U�Z � �
U�i�
U�Z −
m��Vi�
U�Y1W 
According to Efron [9], maximum likelihood estimation Un for 

U satisfies: 

 WZiB
Un� � 0 (12) 

where iB
Un� � ∑ i�
Un���2� , so we get the prior distribution 

estimation of �� , �n#4�
#�6, $ � 1, . . , � for every discretization 

point in finite discrete support set, T. Based on the definition 

of marginal density, the marginal density of �� is: 

 &*D 
Q�� � ∑ +
��|����
���>D  (13) 

 

C. The Modified Structural Quasi Score Estimator for 

Poisson Regression Parameters 

The mean and variance functions of the surrogate model 

based on the quasi-likelihood approach in equation (5) and (6):  

H
�� , 	� � �@A . ?4�@C)D|��6 

E
�� , 	� � ��@A . ?4��@C)D|��6 − 3�@A . ?4�@C)D|��67�

� �@A . ?4�@C)D|��6 

 

have a term of the conditional distribution of �� given ��. We 

assume the conditional distribution of ��  given �� , &*D|)D  is 
the Poisson distributed with rate ��  and the prior density 

estimation �n�
��� for every discretization point in support set 

T are estimated by the EBD method. From equation (10), we 

get the marginal density &*D 
Q��, and we compute the joint 

probability distribution of ��  and ��  : 
 &)D,*D 
�� , Q�� � &*D|)D
Q��. �n�
��� (14) 

The conditional probability of �� given �� is given as follows: 

  &)D|*D
��� � opD,qD
>D,rD�
oqD
rD�  (15) 

Using equation (15), we can compute the mean function and 

variance function in equation (5) and (6) as a function of the 

Poisson regression parameter for �
��, � � 1, . . , � : 

 H
�� , 	� � �@A . ∑ �4@C)
D� 6�G4�
�� |��6)
s�
)
C�  

 H
�� , 	� � �@A.�4@C)
C� 6�G4�
�� |��6 � 

          �4@C)
g� 6�G4�
�� |��6 � ⋯ � �4@C)
s� 6�G4�
�� |��61 
Let u� � �G4�
�� |��6, � � 1, … , �, then: 

H
�� , 	� � u��@AB@C)
C� � u��@AB@C)
g�+ …+ u��@AB@C)
s� 
Variance function in equation (6) as follows: 

E
�� , 	� � ��@A . ?3�
�@C)D∗ �|��7 − I�@A . ?3�
@C)D∗ �|��7J�

� �@A . ?3�
@C)D∗ �|��7 
First, we computed ? I�4�@C)
D� 6|��J as follows: 

?3�4�@C)
D� 6|��7 � w �4�@C)
D� 6�G4�
�� |��6
)
s�

)
C�

 

1877



� I�42	1�
1� 6�G4�
1� |�16 � �42	1�
2� 6�G
�2∗  |�2� � ⋯
� �42	1�
�� 6�G4�
�� |��6J 

then  

E
�� , 	� � 3u���@AB�@C)
C�

� u���@AB�@C)
g�+ … + u���@AB�@C)
s�7 − 

3u��@AB@C)
C� � u��@AB@C)
g�+ … + u��@AB@C)
s�7� � 

3u��@AB@C)
C� � u��@AB@C)
g�+ … + u��@AB@C)
s�7 
 

For constructing the quasi-score function, we compute 

the partial derivative of mean and variance function with 

respect to O . The estimated regression coefficient of the 
Poisson regression model is carried out by solving the quasi-

score equation �
O� � y  as a nonlinear system in O . We 

called it the modified SQS estimator for the parameter O as 

follows: 

�
��
	
� � ∑ N!
*D ,O�
N@A

 'DL!
*D ,O�
M
*D ,@�

��2�   

 
�
��
	�� � w zH
�� , O�

z	�
 �� − H
�� , O�

E
�� , 	�
�

�2�
 � 0 

III. RESULTS AND DISCUSSION 

We did some simulation scenarios to explain the estimation 

methods. The following steps were conducted: 

Step 1: Generate covariate measured with error ��  and 

 surrogate data , 1,.., .iW i n We choose 

 50,100,200,300.n   The vector of  covariate 

 ��~{FHHF
2,1�,  ��~{FHHF
1,2� and surrogate 

 data ��~�������
���  

Step 2: Using surrogate data �� , … ��, support set T for �� 
 is chosen based on the value of surrogate data ��: 
 T � S�
��, �
��, . . , �
��T. We choose 2 types of finite 

 discrete support set T � .H��
���, HF�
���1  and 

 T � .W�
���, W|
���1  compute prior density 

 estimation, �n
��� � �G4�� � �
#�6, $ � 1, . . , �  by 

 EBD method using R package deconvolveR 
Step 3: By setting the vector of the Poisson regression model 

parameter 	 � 
1, −1� , we generate the response 
data ��  from a Poisson distribution with parameter 

�� � ��L>
D� , � � 1, . . ,100 
Step 4: Compute the marginal density of �� as in equation 

(13) and &)D,*D
�� , Q��  in equation (14), then we 

compute conditional expectation ?4�@C)D|��6  and 

?4��@C)D|��6 based on the conditional distribution 

&)D|*D
��� 

Step 5: We compute mean and variance function as in 
 equation (5) and (6) and construct quasi score 

 function ��


	�   

Step 6:  We find the root of ��


	� � 0,  as the modified 
 SQS estimator for the Poisson Regression model 

 parameter: 	5 � 4	5
, 	5�6 

Step 7: Step 1 to 5 are repeated 1000 times and compute the 
mean, standard error of the mean, standard deviation, 
and bias of modified structural quasi score estimator 

O} � 4	5
, 	5�6 

 
All the steps are described in a flowchart, as shown in Fig. 

1. The simulation is done by R package [30] and result of 
simulation studies are shown in Fig 2-3 and Table 1.  

 

 
Fig. 1  Flowchart of simulation method 
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TABLE I 

ESTIMATION RESULTS FOR POISSON REGRESSION PARAMETER BY MODIFIED STRUCTURAL QUASI SCORE ESTIMATOR O} � 4	5
, 	5�6 

 

 
 

 
 

(a) Gamma(2,1), T=[Q1(Wi),Q3(Wi)] 

 

 

 

(b) Gamma (2,1), T=[Min(Wi),Max(Wi)] 
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Prior 
Distribution 

T n 
                     	5
                	5� 

Mean 
SE 
Mean 

StDev Bias Mean 
SE 
Mean 

StDev Bias 

      
Gamma (2,1)      

 50 12.98 1.31 41.41 12.88 -2.65 0.79 25.16 -2.55 

 50 19.20 1.40 44.37 19.10 -0.99 0.24 7.64 -0.89 

 100 18.11 1.69 53.53 18.01 -2.97 0.88 27.95 -2.87 

 100 19.47 1.42 44.76 19.37 -1.55 0.43 13.59 -1.45 

 200 16.04 1.93 61.05 15.94 -1.95 0.27 8.60 -1.85 

 200 19.16 2.13 67.34 19.06 -1.21 0.15 4.63 -1.11 

 300 19.53 2.29 72.40 19.43 -4.82 1.82 57.51 -4.72 

 300 20.81 1.77 55.99 20.71 -2.04 0.66 20.87 -1.94 

Prior 

Distribution 
T n 

                     	5
                	5� 

Mean 
SE 
Mean 

StDev Bias Mean 
SE 
Mean 

StDev Bias 

      

Gamma (1,2)      

 50 19.02 1.72 54.37 18.92 -2.22 0.52 16.48 -2.12 

 50 21.93 1.53 48.52 21.83 -1.02 0.17 5.45 -0.92 

 100 14.94 2.22 70.10 14.84 -2.21 0.38 11.93 -2.11 

 100 22.86 1.56 49.29 22.76 -1.09 0.19 5.96 -0.99 

 200 18.38 1.68 53.11 18.28 -2.21 0.34 10.89 -2.11 

 200 22.04 1.88 59.31 21.94 -1.24 0.16 5.17 -1.14 

 300 17.15 1.75 55.40 17.05 -1.95 0.15 4.78 -1.85 

 300 25.11 1.55 48.96 25.01 -1.26 0.13 4.24 -1.16 
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(c) Gamma (1,2), T=[Q1(Wi),Q3(Wi)] 

 

  
(d) Gamma (1,2), T=[Min(Wi),Max(Wi)] 

Fig. 2  (a)-(d) Cumulative Mean Plot of O} � 4	5
, 	5�6 for � � 50,100,200,300 

 

 

  
Fig. 3  Bias plot of modified SQS estimator O} � 4	5
, 	5�6 

 

IV. CONCLUSION 

We considered the modified SQS estimator for the 

parameters of a Poisson regression model with measurement 

errors in a covariate. According to a known probability 

distribution, the true covariate measured with error comes 

from an unknown density function and has yielded observable 

values as a surrogate. We estimated the probability density 

function of true covariate as the prior density of Poisson 

distributed surrogate by the Empirical Bayes Deconvolution 

(EBD) method. After getting the probability estimation for 

every discretization in support set of the true covariate, we 
modified the mean and variance function in the quasi 

structural score estimating function proposed by Kukush et al. 

[23], and the modified SQS estimator is the root of the quasi 

structural score estimating function. For assessing the quality 
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and the bias of the modified SQS estimator. As a result of the 
simulation, the bias of the modified SQS estimator has smaller 
values for the smaller-scale parameter value of Gamma 
distribution and becomes larger for the interquartile range 
discrete support set. In the next research, we will investigate 
the consistency of the modified SQS estimator and use more 
than one covariate contain measurement error in the Poisson 
regression model, and the estimation theory developed in this 
paper can be extended to the case where the distribution of the 
surrogate is not just a Poisson distribution but any discrete or 
continuous distribution. 
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