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Abstract— In the past few years, there has been an increase in natural disasters due to hydrogeological instability caused by heavy 
rain. Therefore, to reduce the risk of an imminent occurrence of a disastrous event and reduce the risk to humans, an accurate 
estimate of the precipitation levels based on advanced machine learning techniques is necessary. In this paper, a new dataset is 
proposed containing audio/video data recorded via a multimodal rain gauge created ad hoc. The dataset, denominated AVDB-4RC 
(Audio/Video Database for Rainfall Classification), contains digital audio/video sequences recorded for seven different levels of 
precipitation intensity. In particular, the database presents a set of audio sequences containing the acoustic timbre produced by the 
rain and video sequences containing rain videos, both in seven different intensities, i.e., “No rain,” “Weak rain,” “Moderate rain,” 
“Heavy rain” and “Very heavy rain,” "Shower rain" and "Cloudburst rain." For the validation of the dataset, the paper proposes a 
novel rainfall classification approach based on a video pattern recognition system that uses CNN neural networks. The average 
classification accuracy is approximately 49% and can reach 75% if the adjacent misclassifications are not considered. Presumably, it 
is the first open dataset from the new generation acoustic/video rain gauges available for evaluating the estimated rainfall 
performance. We hope that this new open dataset will encourage a comparison of rainfall estimation/classification algorithms on this 
common database so that the adopted techniques are objectively assessed and improved. 
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I. INTRODUCTION 

The creation of multimodal datasets (e.g., audio, video) 
containing information regarding the levels of rainfall 
intensity is essential to ensure the safety of people and things 
in hydrogeological risk management scenarios. Thus, 
innovative and accurate techniques of rainfall classification 
must be employed. Tilt rain gauges generally consist of a 
plastic manifold balanced on a pin. When it tips, it actuates a 
switch; this action is then electronically recorded or 
transmitted to a remote collection station. The disadvantage 
of this system lies in the fact that it tends to underestimate 
the amount of rainfall, particularly in snowfall and heavy 
rainfall events. Besides, the inclination of the receiver and 
different types of dirt that may clog the water collection 
point also has an effect on its performance.  

These problems have led to the use of alternative rain 
gauges capable of facing this challenge, such as weather 
radar, satellite, and radio link rain gauge [1]–[4]. 

 To overcome the limitations present in traditional 
techniques of classification, recent studies [5]–[9] have 
adopted advanced neural network approaches and audio 

identification features [10]–[12]. Further studies have 
devised rain gauges based on the analysis of rain images to 
classify rainfall intensity [13]–[16]. 

This paper presents a new database that includes audio 
and video sequences and the first example of a 
Convolutional Neural Network (CNN) approach to the 
classification of rainfall levels through differential video 
images. The new dataset has been denominated Audio/Video 
Database for Rainfall Classification (AVDB-4RC), and it 
contains data collected from seven different levels of rainfall 
that can be used for designing and evaluating the 
performance of multimodal rain gauge systems.  

In particular, the database presents a set of audio 
sequences containing the acoustic timbre produced by the 
rain and video sequences containing rain videos, both in 
seven different intensities, i.e., “No rain,” “Weak rain,” 
“Moderate rain,” “Heavy rain” and “Very heavy rain,” 
"Shower rain" and "Cloudburst rain." The database proposed 
in this paper is an extension of the one used in our previous 
study [17], where we proposed a new rainfall classification 
algorithm based on an audio signal and evaluated its 
performance. At first, the spectral and statistical analysis of 
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the audio sequences were presented, followed by the 
performances from the accuracy of an audio pattern 
recognition system based on the CNN network. 

In this paper, we carry out a similar study focusing on the 
recorded video sequences. At first, we define the structure of 
the proposed dataset, and then we evaluate the database 
containing the video sequences by training a convolutional 
neural network. The paper is organized as follows: Section II 
illustrates the rainfall classification audio and video dataset; 
Section III describes the hardware and software components 
used; Section IV illustrates the audio and video dataset 
before feeding it to the neural network; Section V shows the 
CNN adopted for the video dataset in input; Section VI 
shows the results of the video sequence classification; 
Section VII depicts the structure of the audio/video database; 
Section VIII is devoted to conclusions. 

II. MATERIAL AND METHOD 

A. Rainfall Classification Audio and Video Dataset 
Fig. 1 shows the acquisition system used for the created 

database. The sequences so labeled are archived in the 
database. The multimodal acquisition system is divided into 
two parts: 

 

 
Fig. 1 Audio and Video acquisition system 

 

1) Audio acquisition system: the system samples audio 
sequences at a frequency of 22.05 kHz at 16 bit (PCM 
format). The database consists of seven precipitation 
intensity categories, defined in Table 1; for each category, 
there are 2 audio sequences, lasting 22 seconds each. 

2) Video acquisition system: the system samples at a 
fixed frame-rate of 15 FPS with a frame size of 640×480 
pixels. The database is made up of seven categories of 
rainfall intensity, defined in Table 1 for each category 2 
video sequences are lasting 22 seconds each, synchronized 
with the relative audio sequences described above. The 
classification levels are obtained based on different levels of 
precipitation. These levels are obtained by taking the 
national classification scales [18] as a reference and slightly 
modifying some sample ranges.  

 

In this way, we obtain some adequate and homogeneous 
samples corresponding to different precipitation classes. The 
current database was created by recording the sequences on 
a rainy day characterized by all seven levels of rainfall 
intensity. Furthermore, during the signal acquisition and 
recording phase, continuous checks were made on the 
correct functioning of the rain gauge (e.g., presence of dirt in 
the collection tray) used to measure and label the rainfall 
intensity levels.  

TABLE I 
RAINFALL INTENSITY CLASSIFICATION 

Rain Classification Precipitation Intensity 
NR – No Rain < 0.5 mm/h 

W – Weak rain [0.5 – 2] mm/h 

M – Moderate rain [2 – 6] mm/h 

H – Heavy rain [6 – 10] mm/h 

VH – Very heavy rain [10 – 18] mm/h 

S – Shower rain [18 – 30] mm/h 

C – Cloudburst rain > 30 mm/h 

 

Finally, the database was verified and processed manually, 
eliminating incorrectly labeled sequences, through a 
repeated phrase of audio/video analysis by an operator. 

The dataset is composed of: 
• Ten audio-video files for the categories "No rain," 

"Weak rain," "Moderate rain," "Heavy rain" and 
"Very heavy rain"; 

• 3 audio-video files for the "Shower" category; 
• 2 audio-video files for the "Cloudburst" category. 

70% of the audio and video files make up the learning 
dataset, the remaining 30% make up the testing dataset.  
Consequently, the learning dataset is divided into training 
dataset (70%) and validation dataset (30%). 

Once the dataset is created, the audio and video signals 
are normalized using mean and standard deviation and fed as 
input to the neural network. The percentage of probability 
corresponding to each individual class will appear in the 
output. The fact that the presented database contains video 
sequences recorded in a single location does not represent a 
critical issue as it is always possible to make the database 
independent of the specific background image by conducting 
differential analysis of the video signals before they are fed 
as input to the neural network. 

The image processing procedures carried out on the 
videos are as follows: 

• Extraction of frames with frame-rate equal to 30 FPS 
and offset equal to 1 frame; 

• Calculation of "differential images". 
Fig. 2 shows an example of a differential image for each 

level of rainfall. Note that no information appears in the 
background and the number of drops is proportional to the 
rainfall intensity. DCT is applied to the entire image as a 
result of the procedure described in the previous points. The 
data obtained from the application of the DCT are 
standardized and fed to the neural network. 
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Fig. 2 Examples of differential frames related to each level of precipitation: 
(a) “No rain”; (b) “Weak rain”; (c) “Moderate rain”; (d) “Heavy rain”; (e) 
“Very heavy rain”; (f) “Shower”; (g) “Cloudburst”. 

B. Hardware and Software Description 

The proposed system is capable of detecting the audio and 
video data of the rain using a video camera with a 
microphone located inside a plastic shaker. The main interest 
lies in capturing audio and image data when rain falls on the 
plastic surface of the shaker. Moreover, we are interested in 
obtaining a more efficient and rapid classification of the 
different levels of rainfall intensity. Fig. 3 shows the general 
scheme of our audio and video sequence acquisition system. 

In particular, the system is made up of a microphone and 
camera (a); plastic shaker with transparent cover (b); tipping 
bucket rain gauge (c); Raspberry Pi (d), used for data 
processing; 4G dongle (e) for data transmission. 

The dimensions of the hardware components and the 
distances used by the recording kit are as follows: 

• size of the base of the kit equal to 30x40 cm; 

• the lower base diameter of the plastic shaker equal to 
7 cm; 

• the upper base diameter of the plastic shaker equal to 
10 cm; 

• height of the shaker equal to 17 cm; 
• transparent plastic dome thickness equal to 2 mm; 
• the distance of the camera/microphone from the 

sidewall of the shaker equal to 5 cm; 
• the diameter of the transparent dome equal to 12 cm; 
• the distance of the camera/microphone from the 

transparent dome equal to 5 cm. 
 

 
Fig. 3 Hardware components 

 
The kit was placed on a wall raised from the ground at the 

height of about 1.80 meters and away from sources of 
disturbance (roads, people, etc.). A camera and a 
microphone connected to a processing unit make up the 
system. The processing unit allows the synchronous 
aggregation of audio and video sequences in the same 
precipitation intensity class. The labeling algorithm, 
described in detail in our previous paper [17], allows 
defining the precipitation intensity classes to which the audio 
and video files (each 22 seconds long) belong. The labeling 
takes place utilizing the "interruptions" generated by the 
tipping bucket type rain gauge, whenever it is overturned by 
rain.  

The tipping rain gauge is connected to the processing unit 
via an RJ11 cable and is managed ad hoc through a software 
interface capable of detecting and counting the 
"interruptions." Once the data is obtained, it can be sent via 
the cloud (4G dongle) to the cloud and entered into the 
database [19]. Subsequently, once the rain gauge recordings 
and "interruptions" have been obtained, it is possible to 

estimate the quantity of mm/h using formula 1, where the  
Th

Ts

  

Ratio corresponds to the number of tips that would occur in 
an hour-long observation interval assuming constant rain. So, 
every minute, the amount of rainfall in mm/h relative to that 
minute, i.e., the 22 seconds of the audio-video sequence 
contained in that minute, is estimated and labeled in the 
database according to the rainfall classes defined in Table 1. 

 

e = 
C*Th

Ts

 (1) 
 

• C  [mm] is the capacity of the tipping bucket rain 
gauge for water collection; 

• Rk stands for the instant of the k-th bucket rotation, 
subsequent to Ti (final instant of the i-th time window 
of the audio-video signal to be labeled); 
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• Rk-1 is the instant of the k-th -1 bucket rotation, prior 
to Ti; 

• Ts corresponds to the time interval between Rk  and 
Rk-1; 

• Th is 3600 seconds. 
This process is repeated for each 22-second recording 

sequence stored in the database. Every minute the obtained 
values are sent to an IoT platform via the publish/subscribe 
protocol [20] and are used to label the audio/video signal at 
different rainfall intensities. 

C. Dataset Structure 

The dataset is organized into two folders: Learning and 
Testing, as shown in Figure 4. The internal structure of the 
two folders is the same, i.e., both of them contain 7 
subfolders named using the initials of each level of 
precipitation (nr, w, m, h, vh, s, and c). Within each 
subfolder, relating to each level of precipitation, there are 
two files, one audio (.wav) and one video (.mkv), both 
lasting 22 seconds. 

D. Audio Dataset 

The audio sequences recorded and acquired by the 
acquisition system described in Section II, are 22 seconds 
long each. Before being fed as input to the neural network, 
they are divided into subsequences of shorter duration and a 
sliding window with an offset of 100 milliseconds is applied. 
Subsequently, the obtained sub-sequences are fed as input to 
the neural network. The result of this training and 
subsequent testing is described in detail in [17].  

E. Video Dataset  

Before being fed to the CNN, the video sequences 
undergo a preprocessing phase. As described in Section II, 
the differential frame sequences are extrapolated, taken at 30 
FPS frame-rate, with 1 frame offset. Subsequently, each 
grayscale frame is initially scaled non-linearly to the size of 
224x224 (to correspond to the shape required for the CNN 
input) and then converted into a matrix. To extract the 
frequency content of each frame, the DCT (Discrete Cosine 
Transform) is applied to the matrix. 

Finally, certain steps are taken to insert standardized 
matrices into the neural networks. The first step is to extract 
frames at a frame rate of 30 FPS from the original video. 
Next, a difference between the extracted frames is created 
moving from frame to frame with an offset of 1 frame. The 
obtained differential images are resized to a size of 224x224. 

The image is represented as an array by applying the 
"NUMPY" function in python. Subsequently, the DCT is 
applied to the values represented in the matrix, whereas the 
obtained values are standardized and fed as input to the CNN 
network. Once the manipulation is complete, a division is 
performed before feeding all the data to the neural network: 
70% of these matrices are inserted in the learning set (further 
broken down into 70% of the training set and 30% of the 
validation set) and 30% in the testing set. 

Once the dataset is created, each matrix is fed as input to 
the neural network (CNN). The probability percentage 
corresponding to each individual class will appear in the 
output. Section VI will analyze the performance of this 

network when this validation dataset is applied to the 
network input.  

 

 
Fig. 4 Learning and testing dataset folder 

F. CNN Adopted 

The type of convolutional neural network used in this 
article is a convolutional network already known in state of 
the art: SqueezeNet [21], which is the evolution of the 
AlexNet network [22]. The difference between the two is 
given by the reduced complexity of SqueezeNet compared to 
AlexNet. In fact, the goal of SqueezeNet is to deliver the 
same performance of AlexNet using 50 parameters less, thus 
employing only 5 MB of parameters, instead of 240 MB 
used by AlexNet. Squeezenet is not an AlexNet compression, 
rather it is a completely different Deep Neural Network 
(DNN) architecture.  

Both networks have a common denominator, i.e., the level 
of classification accuracy on the same database (Imagenet).  
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SqueezeNet is a completely convolutional neural network 
with reduced complexity and with layers of dropout, which 
allows improving performance without affecting accuracy. 
In Fig. 5 it is possible to view the SqueezeNet architecture 
applied. The first layer is a standalone convolution layer 
(conv1), followed by 8 Fire modules (fire2-9); the last layer 
is a convolutional layer (conv10).  

 The number of filters per fire module from the beginning 
to the end of the network gradually increases from the first 
to the last layer. SqueezeNet performs max pooling with a 
stride of 2 after layers conv1, fire4, fire8, and conv10. 
Details about this deep neural network are illustrated in [21], 
[23]. 

 

 
Fig. 5 Microarchitectural view of our SqueezeNet architecture. 

III.  RESULTS AND DISCUSSION 

In this section, the results obtained by applying the 
automatic learning technique will be analyzed, with pre-
processed video frames, coming from the validation dataset, 
fed as input for the CNN. Fig. 6 shows the progress of 
training losses (blue curve) and test losses (orange curve); 
both curves decrease with increasing epochs.  

On the contrary, Fig. 7 shows that the trend of training 
accuracy and test accuracy increases with increasing epochs. 
The two graphs are complementary, since the accuracy 
increases, the loss for training and tests decreases. This 
implies that the neural network is performing an accurate 
classification. Fig. 8 shows the confusion matrix obtained by 
processing the sequences contained in the validation dataset 
and entered in the CNN network. The confusion matrix 
allows calculating the percentage of classification accuracy. 
It shows that the average classification accuracy is 

approximately 49% and can reach 75% if the adjacent 
misclassifications are not considered.  

 

 
Fig. 6 Training and test losses without sub-block 16x16. 

 
 

 
Fig. 7 Training and test accuracy without sub-block 16x16. 

 

 
Fig. 8 Confusion matrix without sub-block 16. 

IV.  CONCLUSION 

The paper presents a freely available set of data for the 
design and/or validation of innovative mono/multimodal 
systems for rainfall classification. To the best of our 
knowledge, this is the only dataset of this kind. Presumably, 
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it is the first open dataset from the new generation 
acoustic/video rain gauges available for evaluating the 
estimated rainfall performance.  We hope that this new open 
dataset will encourage a comparison of rainfall 
estimation/classification algorithms on this common 
database so that the adopted techniques are objectively 
assessed and improved. We finally hope that other research 
groups will contribute to future releases of AVDB-4RC or 
will release their datasets to the research community for 
future systems to be tested on open corpora of rainfall 
sounds/video, increasing the validity of each new scientific 
result obtained. The audio-video dataset is freely 
downloadable from the following link: 
https://github.com/vicosystems/AVDB-4RC. 
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