

Vol.10 (2020) No. 1

ISSN: 2088-5334

Methods for Software Visualization of Large Graph Data Structures
Velin Kralev #1, Radoslava Kraleva #2

Department of Informatics, South-West University "Neofit Rilski", 66 Ivan Michailov Str., Blagoevgrad, 2700, Bulgaria
E-mail: 1velin_kralev@swu.bg, 2rady_kraleva@swu.bg

Abstract— In this paper, three different methods for software visualization of large graph structures, respectively Rectangle,
Intersection and Combined are presented. The basic concepts for using software development environments are outlined. Their
capabilities for visual designing and event-oriented programming are discussed. A brief analysis of the basic features of the
environment used to develop the ClipRect Monitor application is made. The main functions of this software are also presented. All
experimental results in this study are generated with this application. According to the methodology, six graphs are prepared to
determine the effectiveness of the three methods. The number of vertices and the edges of these graphs are proportional to the size of
the drawing area (canvas). The drawing areas are also six and have different sizes, such that each subsequent area has a height and
width twice the size of the previous one. Besides, for all areas, the width/height ratio is exactly 16:9. This ratio is widely used in
monitors as well as laptops, mobile phones and tablets. The largest drawing area that the ClipRect Monitor application scanned
during the experiments is 128 000 x 72 000 pixels. This scan is performed for graph G_6 with 1 415 vertices and 100 000 edges. The
visualization area is diagonally positioned relative to the drawing area. For each visualization area, each of the three methods,
respectively Rectangle, Intersection and Combined is performed. The Combined method executes the Rectangle method first and then
the Intersection method. The results show that the Intersection method was the slowest compared to the other two methods in terms
of the number of edges of the graph that are analyzed. When the visualization area is internal to the drawing area, the Rectangle
method performs better than the Combined method. The Rectangle method gives the best result in terms of time for analysis and
drawing of the edges of the graph. The Combined method combines the characteristics of the other two methods. This method is
optimal in terms of the time of analysis of the need to draw the edges of the graph relative to the number of drawn edges.

Keywords— graph; large graphs; graph structure; software development; software visualization.

I. INTRODUCTION

Graph theory is a scientific field that has evolved very
rapidly in recent decades [1]. Complicated real problems can
be represented by graphs [2] and [3]. Other similar problems
are related to finding the shortest routes [4] and generating
university timetables [5]. Problems from other scientific
fields, such as [6]–[10] can also be described and analyzed
by graphs. The graph structures can be stored in databases
and retrieved by web services [11].

The visual representation of graphs is the process by
which different geometric objects - lines, circles, and regular
polygons are drawn on a computer screen. Typically, the x
and y coordinates of a given vertex are known, or the
coordinates of the two ends of an edge are known, i.e., these
are the coordinates of the two vertices that are incident to
this edge. When visualizing multigraphs, parallel edges are
drawn using Bezier curves to avoid overlapping lines.

When, in a graph, the total number of vertices and edges
is small (for example, in the order of hundreds to thousands),
the drawing of a graph by geometric objects is performed
relatively quickly (i.e., imperceptible to the user). When

increasing the number of vertices, respectively increasing the
number of edges in a graph (up to hundreds of thousands,
even millions), it is necessary to use methods to optimize the
process of drawing the graph structure on the computer
screen. Usually, large graph structures contain millions of
objects (vertices and edges) and cover large areas, depending
on the used units of measurement [12]. These areas are much
larger than the size of a computer screen, i.e., much larger
than the screen resolution. The distance between the two
farthest vertices can be in the order of tens of thousands of
pixels (depending on the real object represented by the graph
structure).

For large graphs, one effective method is to draw from all
elements of the graph (vertices and edges) only those that
fall within the visible area of the screen [12]. This approach
can be used when the area of the graph is much larger than
the size of the computer screen. When drawing each vertex
of a graph, it is checked whether its coordinates are internal
to the visible area of the screen or not. Only those vertices of
the graph that fall into the visible area of the screen are
drawn, and the others are only checked. In this way, the
number of checks on whether a graph vertex falls within the

1

visible area of the screen or not exactly n (n is the number of
vertices in the graph).

There is a significant difference in the visualization of the
edges of the graph compared to the visualization of the
vertices of the graph. It is necessary to check the coordinates
of each edge (i.e., the coordinates of the vertices that are
incident to that edge) and to consider three cases. First,
whether both vertices incident with this edge falls within the
visible area of the screen. Second, whether one of the
vertices incidents with this edge falls within the visible area
of the screen. Third, if neither of the two vertices incidents
with this edge falls within the visible area of the screen, the
given edge intersects the visible area of the screen [13].

Whether a vertex V with x, y coordinates fall into a
rectangular area defined by the points A, B, C and D,
respectively with coordinates A(x1,y1), B(x2,y1), C(x1,y2), and
D(x2,y2) can be made with the following logical expression:

 B = ((x ≥ x1) and (x ≤ x2) and (y ≥ y1) and (y ≤ y2)) (1)

If the logical expression B is true, then the vertex V with

the coordinates x, y falls in the visible area of the screen. A
detailed description of this problem is presented in [13].

Since the intersection of the visible area of the screen by
an edge is a special case of the line-line intersection
problem, it will be briefly discussed here. Different
algorithms for a line segment clipping by the rectangle are
presented in [14], [15], and [16]. Various approaches to
improve the performance of these algorithms have also been
developed - [17] and [18].

In the general case, to calculate the intersection of two
lines a and b, respectively, determined by the points A(x1,y1)
and B(x2,y2) for a, and the points C(x3,y3) and D(x4, y4) for b,
the following equations can be used [13]:

 t =(x1–x3)*(y3–y4) – (y1–y3)*(x3–x4) / (2)
 (x1–x2)*(y3–y4) – (y1–y2)*(x3–x4), thus

 x = x1 + t*(x2–x1) and y = y1 + t*(y2–y1) (3)

or
 u =(x1–x3)*(y1–y2) – (y1–y3)*(x1–x2) / (4)
 (x1–x2)*(y3–y4) – (y1–y2)*(x3–x4), thus

 x = x3 + u*(x4–x3) and y = y3 + u*(y4–y3) (5)

If the lines a and b are parallel or coincident, then:

 (x1–x2)*(y3–y4) – (y1–y2)*(x3–x4) = 0 (6)

If the lines a and b have an intersection point, then:

 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, i.e., t ∈ [0, 1] and u ∈ [0, 1] (7)
When one of the two lines is horizontal, for example line

b, defined by the points C(x3,y3) and D(x4,y4), then the
parameters t and u can be calculated as follows:

 t = (– (y1–y3)*(x3–x4)) / d, and (8)
 u = ((x1–x3)*(y1–y2) – (y1–y3)*(x1–x2)) / d, where
 d = – (y1–y2)*(x3–x4), and d ≠ 0
if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, i.e.t ∈ [0, 1] and u ∈ [0, 1], then

 x = x1 + t*(x2–x1); y = y1 + t*(y2–y1), or
 x = x3 + u*(x4–x3); y = y3 + u*(y4–y3) = y3,
 because y3 = y4 and (y4–y3) = 0

When one of the two lines is vertical, for example the line
b, defined by the points C(x3,y3) and D(x4,y4), then the
parameters t and u can be calculated as follows:

 t = (x1–x3)*(y3–y4) / d, and (9)
 u = ((x1–x3)*(y1–y2) – (y1–y3)*(x1–x2)) / d, where
 d = (x1–x2)*(y3–y4), and d ≠ 0
if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, i.e.t ∈ [0, 1] and u ∈ [0, 1], then
 x = x1 + t*(x2–x1); y = y1 + t*(y2–y1), or
 x = x3 + u*(x4–x3) = x3, because
 y3 = y4 and (y4–y3) = 0; y = y3 + u*(y4–y3)

Although only the edges that intersect the visible area of
the screen (or are internal to it) are drawn, it is necessary to
check all the edges of the graph. Similarly, as it is necessary
to check all n vertices of a graph, so it is also necessary to
check all m edges of a graph.

In the present study, three different visualization methods
for large graph structures will be analyzed. They will be
experimentally verified.

The first method (Rectangle) checks that the rectangle of
the visible area of the screen has a common area with the
rectangle formed by the coordinates of the two vertices
incident to the edge considered. In this method, all edges of
the graph are checked, but only those in which the condition
is fulfilled are drawn. The relative position of the two
rectangles may be such that one rectangle is contained in the
other, the two rectangles partially overlap or have no
common area.

The second method (Intersection) checks whether or not
an edge intersects the display area. Only when this is true,
does a given edge draw. There are also three options. First,
the edge is outside the visualization area. Second, the edge is
inside the visualization area. Third, the edge intersects the
visualization area at one or two points.

The third method (Combined) combines the Rectangle
and Intersection methods. This method first checks whether
the two rectangular zones (the one defined by the
coordinates of the two vertices incident to the edge and the
one defined by the visualization area) have a common area
or not. When this is true, the second method is used to
determine the coordinates of the point (or points) of the
intersection of the edge and the visualization area. It should
be noted that in the Combined method, the Intersection
method may not be executed even if only one of the two
points is internal to the visualization area. This is because in
this case the edge must necessarily be drawn. Specialized
software was developed to test and analyze the three
methods.

There are many programming languages used for
developing software for different purposes [19]. RAD Studio
is an integrated development environment for the rapid
development of applications of various types - console,
desktop, mobile and web-based. Embedded compilers can
generate executable code for different operating systems,
such as Windows (x86 and x64), OS X (32-bit only), iOS,
and Android. This integrated environment for application

2

development includes a wide range of tools. For instance, a
source code editor, a form designer for both the VCL library
and the FMX multi-platform library, an integrated debugger
for all target platforms including mobile, source control, and
many others. Additionally, this integrated environment
offers many ready-made libraries of classes and component
packages. It also makes it possible to create new libraries of
classes and components or to add ones developed by other
developers [20].

The RAD Studio C++ Builder variant, which is based on
the C++ programming language, will be used for this
development. Therefore, some key concepts in this
programming language will be presented.

C++ is one of the most used languages for developing
professional software products [21]. This may be due to the
flexible syntax that this programming language offers. It
must be noted that other high-level programming languages
offer this option as well, e.g., C# and Delphi. However, the
C++ language has very good possibilities for structural and
object-oriented programming. Many mechanisms for linking
different program elements such as functions, objects,
structural data types, recursive function calls, portability, and
many others are also available.

The key concept of using C++ is the ability to use classes
and objects. Classes allow data encapsulation, implicit type
conversion, memory management, and more. When an
application is running, it is possible to determine
dynamically which object with which class (even parental) is
associated with. This approach is known as polymorphism
and is possible due to the "late bonding" technology.
Application development environments that support C ++
usually include extensions that make it a "dialect," but they
give developers additional capabilities that are not provided
in the basic language standard. Such features include, for
example, built-in functions, dynamic memory management,
using aliases, reflections, and more [22]–[25].

The C++ Builder IDE (part of the RAD Studio package) is
an environment for developing applications for different
operating systems. Also, the integrated environment
provides many tools and capabilities, such as expanding the
VCL and FMX class libraries.

This IDE includes a powerful code editor with debugging
capabilities, a designer of forms for designing applications
with a graphical user interface (both for the VCL library and
for the FMX multi-platform library); a debugger for all
target platforms (including mobile and web-based). It also
offers many ready-made libraries of component and data
control, but also provides the ability to extend existing
libraries by installing packages with components and
modules with classes created by other developers.

The text editor of the environment has all the features that
modern code editors offer. The editor supports a complete
code function. This feature makes writing a code easier, it
also reduces the chances to commit syntax errors. When
certain system or user events arise when a user interacts with
controls from the user interface of an application, it is
necessary to write program code in response to these actions.
This code is encapsulated in functions called event handlers.
The implementation of these functions is done in the code
editor. The event handler function is the application response

to the event that occurred.
The visual design tool, i.e., the Form Designer, makes it

possible to create a quick (and relatively easy) graphical user
interface for an application. This designer can be used both
for designing a graphical user interface for form-based
applications, as well as for designing mobile applications
and web pages. The designer also supports real-time data
visualization technology (from different sources). This
enables developers to "see" the final view of an application
during the design time stage.

The final stage in developing an application is its
compiling into an intermediate language or machine
instructions. This is necessary to enable either the virtual
machine or the target operating system to start an
application. In RAD Studio (C++ Builder) there are two
ways to compile an application. First, compiling with
subsequent testing and second, compiling, and testing
simultaneously (using the built-in debugger). The testing
process enables developers to check the values of the
variables and the results of the functions during the runtime
of an application.

II. MATERIALS AND METHOD

ClipRectMonitor software is created for experimental
purposes. A session with the ClipRect Monitor application is
shown in Fig. 1.

Fig. 1 A session with the ClipRect Monitor application

The ClipRect Monitor application has the following

functionalities:
• Setting the coordinates of the visualization area by

typing on the keyboard or using the mouse with the
manipulators to adjust the size;

• Setting the coordinates of the two vertices that are
incident to the edge (possible by entering the
coordinates of the vertices from the keyboard or
dragging the vertices with the mouse);

• Calculating the coordinates of the points of
intersection of the edge with the visualization area;

• Calculating the parameters needed to calculate the
coordinates of the intersection points of the edge with
the visualization area (as presented in I. Introduction).

3

All parameters are displayed by the ClipRect Monitor
application in a special panel - Values Monitoring, which is
shown in Fig. 2.

Fig. 2 The Values Monitoring Panel

Since each edge can have 0, 1, or 2 intersection points

with the visualization area, no more than two sets of controls
are needed to visualize the parameters used to calculate the
coordinates of the intersection point (or points). Thus, the
possible options for calculating the parameters are exactly
eleven, respectively:

• Without intersection point;
• Intersecting one of the borders of the rectangular

visualization area - Left, Top, Right or Bottom;
• Combinations of the intersection of two borders of the

rectangular area, respectively Left - Top, Left - Right,
Left - Bottom, Top - Right, Top - Bottom and Right -
Bottom.

The ClipRect Monitor application has the function of
creating and storing (in external files) graph structures with
many vertices and edges (in the order of millions). Each
graph can be visualized by drawing the vertices and edges
(Fig. 3), by drawing the vertices and rectangular areas
formed by the two incident vertices with each edge (Fig. 4),
and combined by drawing the vertices, edges and rectangular
areas formed by the two vertices incident to each edge. The
coordinates of the vertices incident to each edge represent
the coordinates of the upper left corner and the lower right
corner of each rectangular area in which the given edge is
inscribed.

A graph presents these three methods for visualization
with 15 vertices and 105 edges (Figs. 3, 4 and 5).

Fig. 3 Grpah G_15_105 visualized by vertices and edges

Fig. 4 Graph G_15_105 visualized by vertices and rectangles

Fig. 5 Graph G_15_105 visualized by vertices, edges, and rectangles

The graph structures are stored internally in dynamic

arrays for the vertices and edges, respectively. The ClipRect
Monitor application can process these arrays. Each dynamic
array is a record type structure (i.e., they are record arrays).
Each record is a collection of values of a data. Because
dynamic arrays are read-write, any value can be read and
written by the ClipRect Monitor app.

4

III. RESULTS AND DISCUSSION

The experiments in this study were conducted with the
ClipRect Monitor software. This application was run on a
computer with the Windows 10 operating system (OS).

A. The Methodology of the Experiments

Six graphs were prepared to determine the effectiveness
of the three methods. The number of the vertices and the
edges of these graphs was proportional to the size of the
drawing area – canvas (Table I). The drawing areas are also
six and have different sizes, such that each subsequent area
has a height and width twice the size of the previous one.
Besides, for all areas, the width/height ratio is exactly 16:9.
This ratio corresponds to the standard Full HD (Full High
Definition). This standard is widely used in monitors as well
as laptops, mobile phones, and tablets.

TABLE I
SUMMARIZED INFORMATION OF GRAPHS AND CANVASES

Graph Information Drawing Canvas Information (in px)

ID Vertices Edges Width Height W/H Canvas Area

G_1 250 3 125 4 000 2 250 1.78 9 000 000

G_2 355 6 250 8 000 4 500 1.78 36 000 000

G_3 500 12 500 16 000 9 000 1.78 144 000 000

G_4 710 25 000 32 000 18 000 1.78 576 000 000

G_5 1 000 50 000 64 000 36 000 1.78 2 304 000 000

G_6 1 415 100 000 128 000 72 000 1.78 9 216 000 000

The ClipRect Monitor application was executed four

times for each of the six graphs. The application scanned the
drawing area diagonally and counted the time needed to
analyze and draw the vertices and edges of the graph that fall
into the corresponding visualization area. This operation was
performed for each of the three methods (Rectangle,
Intersection, and Combined) to determine the objects to be
visualized for each specific area. The results obtained were
averaged to a more accurate account for the execution time
of each method.

B. Experimental Conditions

The ClipRect Monitor application was run on a personal
computer (PC) with 64-bit Windows 10 OS (Professional).
The hardware configuration has the following characteristics:
Processor: Intel Core i5-9300H (four cores, eight logical
processors with 2.40 GHz base frequency (4.10 GHz max
frequency), 8MB Cache; RAM Memory: 8 GB.

C. Experimental Results

Table II shows the results of the experiment conducted
with graph G_6 (containing 1415 vertices and 100000 edges,
respectively). The results of the other graphs G_1 ÷ G_5 are
similar. All graphs were tested with 100 visualization areas.

The largest drawing area that the ClipRect Monitor
application scanned during the experiments was 128 000 x
72 000 pixels. This scan was performed for graph G_6 with
1 415 vertices and 100 000 edges, respectively. With the
three methods (Rectangle, Intersection and Combined), the
visualization area was diagonally positioned relative to the
drawing area.

TABLE II
RESULTS FOR THE G_6 GRAPH (FROM 1 280 X 729 POSITION)

Clip Rectangle
Position

Drawing Method
Rectangle Intersection Combined

Left Top Edges Time Edges Time Edges Time

0 0 11 547 24 2 110 11 531
1 280 720 50 547 62 2 141 39 547
2 560 1 440 121 547 93 2 172 64 547
3 840 2 160 341 547 136 2 157 95 547
5 120 2 880 545 547 177 2 172 140 547
6 400 3 600 846 547 271 2 172 211 547
7 680 4 320 1 443 547 342 2 156 265 562
8 960 5 040 2 083 547 389 2 171 312 578
10 240 5 760 2 435 547 426 2 156 341 593
11 520 6 480 2 838 547 457 2 187 370 594
12 800 7 200 3 307 547 480 2 156 377 609
14 080 7 920 3 988 562 570 2 187 463 609
15 360 8 640 4 607 563 625 2 172 514 640
16 640 9 360 5 340 563 810 2 172 706 641
17 920 10 080 6 099 563 885 2 172 781 672
19 200 10 800 6 799 562 899 2 157 796 688
20 480 11 520 7 563 578 905 2 141 788 688
21 760 12 240 8 356 578 932 2 157 810 719
23 040 12 960 9 184 562 929 2 172 815 734
24 320 13 680 9 789 578 940 2 172 835 734
25 600 14 400 10 703 562 1 055 2 157 952 765
26 880 15 120 11 226 578 1 070 2 172 981 766
28 160 15 840 12 125 578 1 085 2 156 993 797
29 440 16 560 13 070 579 1 137 2 156 1 049 812
30 720 17 280 13 909 594 1 221 2 172 1 147 844
32 000 18 000 14 771 578 1 197 2 156 1 127 844
33 280 18 720 15 622 594 1 200 2 156 1 137 875
34 560 19 440 16 419 593 1 264 2 172 1 187 891
35 840 20 160 16 944 594 1 226 2 157 1 163 891
37 120 20 880 17 864 594 1 293 2 156 1 241 922
38 400 21 600 18 513 594 1 298 2 172 1 238 922
39 680 22 320 19 198 625 1 325 2 172 1 278 938
40 960 23 040 19 386 594 1 300 2 156 1 260 954
42 240 23 760 20 409 594 1 325 2 157 1 280 969
43 520 24 480 21 262 610 1 422 2 156 1 373 1 000
44 800 25 200 21 692 610 1 434 2 140 1 399 9 84
46 080 25 920 22 059 610 1 446 2 172 1 414 1 016
47 360 26 640 22 686 610 1 447 2 156 1 419 1 015
48 640 27 360 23 119 594 1 488 2 172 1 461 1 015
49 920 28 080 23 511 609 1 429 2 156 1 418 1 032
51 200 28 800 23 879 609 1 491 2 172 1 483 1 047
52 480 29 520 24 458 610 1 504 2 188 1 493 1 047
53 760 30 240 24 801 609 1 535 2 156 1 528 1 062
55 040 30 960 25 177 609 1 544 2 172 1 531 1 063
56 320 31 680 25 224 609 1 577 2 172 1 569 1 079
57 600 32 400 25 747 610 1 568 2 172 1 564 1 078
58 880 33 120 25 818 609 1 589 2 172 1 585 1 078
60 160 33 840 26 162 609 1 557 2 172 1 557 1 093
61 440 34 560 26 371 610 1 604 2 156 1 603 1 093
62 720 35 280 25 939 625 1 588 2 156 1 588 1 094
64 000 36 000 26 124 625 1 529 2 172 1 529 1 078
65 280 36 720 26 073 609 1 500 2 156 1 500 1 094
66 560 37 440 25 941 610 1 554 2 156 1 554 1 078
67 840 38 160 25 769 609 1 510 2 172 1 506 1 078
69 120 38 880 25 788 625 1 565 2 172 1 563 1 078
70 400 39 600 25 450 625 1 448 2 156 1 444 1 078
71 680 40 320 25 264 625 1 432 2 172 1 425 1 079
72 960 41 040 24 697 610 1 495 2 172 1 487 1 063
74 240 41 760 24 669 609 1 484 2 156 1 477 1 063

5

TABLE III
RESULTS FOR THE G_6 GRAPH (FROM 75 520 X 42 480 POSITION)

Clip Rectangle
Position

Drawing Method

Rectangle Intersection Combined

Left Top Edges Time Edges Time Edges Time

75 520 42 480 24 237 609 1 431 2 156 1 424 1 046

76 800 43 200 24 008 609 1 516 2 172 1 494 1 047

78 080 43 920 23 403 610 1 448 2 172 1 429 1 031

79 360 44 640 23 379 609 1 493 2 156 1 473 1 031

80 640 45 360 22 199 609 1 342 2 157 1 322 1 000

81 920 46 080 21 970 610 1 362 2 172 1 320 1 016

83 200 46 800 20 932 593 1 350 2 156 1 311 984

84 480 47 520 20 663 594 1 370 2 125 1 330 969

85 760 48 240 20 123 609 1 418 2 156 1 372 953

87 040 48 960 19 875 609 1 424 2 172 1 363 953

88 320 49 680 18 729 594 1 329 2 141 1 263 937

89 600 50 400 18 204 594 1 325 2 172 1 263 922

90 880 51 120 17 420 594 1 357 2 156 1 286 906

92 160 51 840 17 087 594 1 370 2 156 1 288 891

93 440 52 560 16 066 578 1 295 2 172 1 227 875

94 720 53 280 15 604 593 1 287 2 188 1 225 891

96 000 54 000 14 667 593 1 275 2 157 1 197 844

97 280 54 720 13 635 578 1 205 2 156 1 111 828

98 560 55 440 12 591 578 1 161 2 172 1 070 813

99 840 56 160 11 804 578 1 114 2 157 1 026 781

101 120 56 880 11 309 578 1 134 2 156 1 044 781

102 400 57 600 10 700 578 1 147 2 172 1 047 766

103 680 58 320 9 734 578 1 151 2 172 1 052 750

104 960 59 040 8 856 578 1 071 2 203 942 735

106 240 59 760 8 385 578 1 039 2 172 914 719

107 520 60 480 7 909 563 991 2 156 877 719

108 800 61 200 7 037 563 1 013 2 172 878 688

110 080 61 920 6 470 562 992 2 171 868 672

111 360 62 640 5 439 563 827 2 187 715 656

112 640 63 360 4 596 562 832 2 156 707 640

113 920 64 080 3 956 563 734 2 172 612 625

115 200 64 800 3 365 562 705 2 172 597 610

116 480 65 520 2 873 563 652 2 172 544 593

117 760 66 240 2 074 547 578 2 157 470 578

119 040 66 960 1 667 562 568 2 171 456 578

120 320 67 680 1 266 563 406 2 172 299 563

121 600 68 400 959 547 302 2 172 219 562

122 880 69 120 665 547 247 2 172 200 547

124 160 69 840 584 547 234 2 172 186 547

125 440 70 560 84 547 84 2 172 55 546

126 720 71 280 23 547 34 2 187 23 547

For each visualization area, each of the visualization

methods was checked, respectively, which vertices and
which edges of the graph under consideration (in this case
G_6) should be drawn and which not. The Combined
method executes the Rectangle method first and then the
Intersection method.

Tables II, III, and Fig. 6 show that the Intersection method
was the slowest compared to the other two methods in terms
of the number of edges of the graph that were analyzed. In
this method, the time for analysis and drawing of the

corresponding edges of the graph is similar for all
visualization areas. In the Rectangle and Combined methods,
the time to analyze and draw the corresponding edges of the
graph is similar when the visualization areas are at the
beginning and end of the diagonal of the drawing area.

Fig. 6 Comparison between the three methods in terms of the time (x-axis
in milliseconds) for analyzing and drawing the edges of a graph for each of
the visualization areas (y-axis)

Fig. 7 Comparison between the three methods in terms of the number of
analyzed edges (y-axis) for each of the visualization areas (x-axis)

Fig. 8 Comparison between the Intersection and the Combined methods in
terms of the number of analyzed edges (y-axis) for each of the visualization
areas (x-axis)

When the visualization area is internal to the drawing

area, the Rectangle method performs better than the
Combined method. The Rectangle method gives the best
result in terms of time for analysis and drawing of the edges
of the graph. In addition, this time remains relatively

6

constant for each of the visualization areas.

Fig. 9 Comparison between the number of drawn edges (left y-axis) and the
time to analyze the need to draw those edges (right y-axis) for each of the
visualization areas (x-axis) in the Rectangle method

Fig. 10 Comparison between the number of drawn edges (left y-axis) and
the time to analyze the need to draw those edges (right y-axis) for each of
the visualization areas (x-axis) in the Intersection method

Fig. 11 Comparison between the number of drawn edges (left y-axis) and
the time to analyze the need to draw those edges (right y-axis) for each of
the visualization areas (x-axis) in the Combined method

Intersection and Combined methods analyze a smaller

number of edges - only those that intersect the visualization
area, but not those whose inscribed rectangles have a
common area with the visualization area. However, the
Rectangle method runs much faster in terms of time to
analyze and draw the edges of a graph. This shows that the
mathematical calculation of the intersection points that the
Intersection and Combined methods performance is a much
more time-consuming computational operation than the

validation of the logical expression performed by the
Rectangle method (see Equation 1).

Fig. 8 shows a comparison between the Intersection and
Combined methods. These two methods both have almost
identical results. This is because the Combined method, after
executing the Rectangle method, also executes the
Intersection method. However, the Combined method is
preferred because, although with a slight difference, it
performs better than the other two methods.

Fig. 9, Fig. 10 and Fig. 11 show summarized results of the
three methods – Rectangle, Intersection and Combined, in
terms of the number of drawn edges of the graph and the
time to analyze the need to draw them for each of the
visualization areas. Fig. 9 shows that in the Rectangle
method, the time to analyze the need to draw the edges of a
graph is proportional to the number of drawn edges. This is
not true of the Intersection method (Fig. 10). In this method,
the time to analyze the need to draw the edges of a graph is
not proportional to the number of the drawn edges. This time
remains relatively constant for all visualization areas. The
third method (Combined) combines the characteristics of the
other two methods. This method is optimal in terms of the
time of analysis of the need to draw the edges of the graph
relative to the number of the drawn edges.

IV. CONCLUSION

Three different methods for software visualization of large
graph structures, respectively Rectangle, Intersection and
Combined were presented in this paper. The basic concepts
for using software development environments were outlined.
Their capabilities for visual designing and event-oriented
programming were discussed as well. A brief analysis of the
basic features of the environment used to develop the
ClipRect Monitor application was made. The main functions
of this software were presented. All experimental results in
this study were generated with this application. According to
the methodology, six graphs were prepared to determine the
effectiveness of the three methods. The number of vertices
and the edges of these graphs were proportional to the size
of the drawing area (canvas). The drawing areas were also
six and had different sizes, such that each subsequent area
had a height and width twice the size of the previous one. In
addition, for all areas, the width/height ratio was exactly
16:9. This ratio is widely used in monitors as well as laptops,
mobile phones and tablets. The largest drawing area that the
ClipRect Monitor application scanned during the
experiments was 128 000 x 72 000 pixels. This scan was
performed for graph G_6 with 1 415 vertices and 100 000
edges. The visualization area was diagonally positioned
relative to the drawing area. For each visualization area,
each of the three methods, respectively Rectangle,
Intersection and Combined was performed. The Combined
method executes the Rectangle method first and then the
Intersection method. The results showed that the Intersection
method was the slowest compared to the other two methods
in terms of the number of edges of the graph that were
analyzed. When the visualization area was internal to the
drawing area, the Rectangle method performed better than
the Combined method. The Rectangle method gave the best
result in terms of time for analysis and drawing of the edges
of the graph. The Combined method combines the

7

characteristics of the other two methods. This method is
optimal in terms of the time of analysis of the need to draw
the edges of the graph relative to the number of the drawn
edges.

REFERENCES
[1] R. J. Wilson, Introduction to Graph Theory, 5th ed., Prentice Hall,

2010.
[2] M. Poobalaranjani, and R. Pichailakshmi, "Dominating cocoloring of

graphs," International Journal of Innovative Technology and
Exploring Engineering, vol. 9(1), pp. 2545-2547, 2019.

[3] B. L. Natarajan, "Computation of chromatic numbers for new class of
graphs and its applications," International Journal of Innovative
Technology and Exploring Engineering, vol. 8(8), pp. 396-400, 2019.

[4] V. Kralev, "Different applications of the genetic mutation operator
for symmetric travelling salesman problem," International Journal
on Advanced Science, Engineering and Information Technology, vol.
8(3), pp. 762-770, 2018.

[5] V. Kralev, R. Kraleva, and S. Kumar, "A modified event grouping
based algorithm for the university course timetabling problem,"
International Journal on Advanced Science, Engineering and
Information Technology, vol. 9(1), pp. 229-235, 2019.

[6] B. Aleksandrov, A. Andreev, and N. Sinyagina, "Fast location of
optimal separated routes in information exchange in computer
networks," International Conference Automatics and Informatics, vol.
2, pp. 95-98, 2003.

[7] R. Kraleva, "ChilDiBu - A mobile application for Bulgarian Children
with special educational needs," International Journal on Advanced
Science, Engineering and Information Technology, vol. 7(6), pp.
2085-2091, 2017.

[8] E, Ville, N. Sinyagina, and P. Borovska, "Deploying Trusted
Computing," Information Technologies and Controls, pp. 28-32,
2009.

[9] J. Abawajy, A. V. Kelarev, M. Miller, and J. Ryan, "Distances of
Centroid Sets in a Graph-Based Construction for Information
Security Applications," Mathematics in Computer Science, vol. 9(2),
pp. 127-137, 2015.

[10] A. K. Abdulsahib, and S. S. Kamaruddin, "Graph based text
representation for document clustering," Journal of Theoretical and
Applied Information Technology, vol. 76(1), pp. 1-13, 2015.

[11] V. Kralev, R. Kraleva, N. Sinyagina, P. Koprinkova-Hristova, and N.
Bocheva, "An analysis of a web service based approach for

experimental data sharing," International Journal of Online
Engineering, vol. 14(9), pp. 19-34, 2018.

[12] V. S. Kralev, and R. S. Kraleva, "Visual analysis of actions
performed with big graphs," International Journal of Innovative
Technology and Exploring Engineering, vol. 9(1), pp. 2740-2744,
2019.

[13] J. F. Hughes, A. van Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. K.
Feiner, and K. Akeley, Computer Graphics: Principles and Practice,
Addison-Wesley Professional, 3 ed., 2013.

[14] V.Skala, "O (lg N) line clipping algorithm in E2," Computers and
Graphics, vol. 18(4), pp. 517-524, 1994.

[15] V. Skala, "An efficient algorithm for line clipping by convex
polygon," Computers and Graphics, vol. 17(4), pp. 417-421, 1993.

[16] V. Skala, "An efficient algorithm for line clipping by convex and
non-convex polyhedra in E3," Computer Graphics Forum, vol. 15(1),
pp. 61-68, 1996.

[17] V. Skala, "A new approach to line and line segment clipping in
homogeneous coordinates," Visual Computer, vol. 21(11), pp. 905-
914, 2005.

[18] D. H. Bui, and V. Skala, "Fast algorithms for clipping lines and line
segments in E2," Visual Computer, vol. 14(1), pp. 31-37, 1998.

[19] J. Coenen, S. Gross, and N. Pinkwart, "Comparison of feedback
strategies for supporting programming learning in integrated
development environments (IDEs)," Advances in Intelligent Systems
and Computing, vol. 629, pp. 72-83, 2018.

[20] K. Vassallo, L. Garg, V. Prakash, and K. Ramesh, "Contemporary
technologies and methods for cross-platform application
development," Journal of Computational and Theoretical
Nanoscience, vol. 16(9), pp. 3854-3859, 2019.

[21] B. Stroustrup, Programming: Principles and Practice Using C++,
Addison-Wesley Professional, 2 ed., 2014.

[22] P. Costanza, C. Herzeel, and W. Verachtert, "Comparing Ease of
Programming in C++, Go, and Java for Implementing a Next-
Generation Sequencing Tool," Evolutionary Bioinformatics, vol. 15,
2019.

[23] N. I. V’yukova, V. A. Galatenko, and S. V. Samborskii, "Support for
Parallel and Concurrent Programming in C++," Programming and
Computer Software, vol. 44(1), pp. 35-42, 2018.

[24] V. Dolgopolovas, T. Jevsikova, and V. Dagiene, "From Android
games to coding in C – An approach to motivate novice engineering
students to learn programming: A case study," Computer
Applications in Engineering Education, vol. 26(1), pp. 75-90, 2018.

[25] D. Charousset, R. Hiesgen, and T. C. Schmidt, "Revisiting actor
programming in C++," Computer Languages, Systems and Structures,
vol. 45, pp. 105-131, 2016.

8

