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Abstract—Polar codes are mathematically proven to achieve the Shannon limit, where the error probability is reduced
with the help of frozen bits. Since the frozen bits are detrimental in terms of transmission efficiency, this paper
investigates the importance of the frozen bits and the possibility of being replaced by other protected bits via a
concatenation with other outer channel coding schemes. We evaluate the impact of frozen bits to the capability of
error correction of original Polar codes (OPC) and the concatenated Polar codes (CPC) in short block-length in terms
of bit-error-rate (BER) performances. Repetition codes are used as outer channel encoder prior to the Polar codes
and are divided into two schemes, i.e., (i) irregular repetition-CPC (IR-CPC) codes and (ii) regular repetition-CPC
(RR-CPC) codes. We evaluate BER performances using computer simulations based on Log-Likelihood Ratio (LLR)
with the modulation of Binary Phase Shift Keying (BPSK) under Additive White Gaussian Noise (AWGN) and
frequency-flat Rayleigh Fading channels. We found that the OPC is better than the IR-CPC codes or RR-CPC codes
for the same channel coding rate and block-length. This finding indicates that the frozen bits in OPC has strong
contribution to the error correction capability of the Polar codes and may not be replaced by other bits even though
the bits are protected by other channel coding schemes.
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I. INTRODUCTION

Claude E. Shannon said that the damage of transmis-
sion caused since the transmission is vulnerable due to the
changes of the channel.by noise or storage medium can be
reduced using a channel coding technique [1], if the channel
coding rate R is below the channel capacity C. Therefore,
development of channel coding scheme is of interest for
wireless communications.

The third generation partnership project (3GPP) sets Polar
coding scheme as one of the channel coding techniques used
in the fifth generation of telecommunications (5G) [2]. Polar
codes are coding technique that work effective on channels
without memory. Polar codes are mathematically proven to
achieve Shannon limits [3] having encoders and decoders
with low computational complexity [4] and [5].

Polar codes use the concept of channel polarization [3],

where the channels are polarized based on the erasure
probability to obtain the polarized channel capacity for the
given location of the bits. Channels with high capacity are
good channels and used to send the information, while the
channels with low capacity are bad channels and used for
the frozen bits.

Frozen bits are important bits sent along with information
bits, of which the values are known to the receiver. Frozen
bits help decoder of Polar codes minimize the error, however,
frozen bits are detrimental to the transmission efficiency.
Furthermore, the performances of Polar codes are depending
on the Bhattacharyya parameters. When the Rayleigh fading
channel is considered [6], the Bhattacharyya are varying
since they depend on the signal-to-noise ratio (SNR), which
is changing in frequency-flat Rayleigh fading channels.

We have developed pattern of frozen location based on
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Fig. 1. System model of transmission structure using Repetition-Concatenated Polar codes transmitted under channel h.

Bhattacharyya parameter in [7] resulting good bit-error rate
(BER) performances almost for all SNR regime. Since the
decoder part leads to a substantial increase in capability
of Polar codes in performing error correction, the current
development of Polar codes are mostly in the decoder part,
for example in [8]–[10].

To investigate the importance of frozen bits, we propose
repetition codes to be concatenated with Polar codes such
that frozen bits can be protected. Repetition codes, although
are very simple, have excellent performances, when they are
combined with extended mapping like in [11]. The repetition
codes are also providing excellent performances when they
are optimized using extrinsic information transfer (EXIT)
chart resulting in very close performances to the Shannon
limit [12]. Some details of EXIT charts are presented in [13]
revealing the benefit, contribution, and connection of frozen
bits with the channel capacity.

Repetition codes considered in this paper are with regular
repetition and irregular repetition. Ref. [14] proved that
combining Polar codes with repetition can increase the
security level of Polar codes. This paper presents a different
structure of the repetition concatenated polar codes compared
to some previous publications, for example, in [14], [15],
[16]. Other concatenations are for multiple input multiple
output (MIMO) [17] and for source coding [18].

In particular, we investigate how frozen bits are important
and how they are likely to be replaced by other coding
techniques, whereas [14], [15] combines repetition with Polar
codes to improve security and capability without evaluating
frozen bits. Other concatenations are discussed in [19].

The contributions of this paper are summarized as follows:

(i) This paper introduces simple concatenation of Polar
codes with regular and irregular repetition codes.

(ii) We provide an analysis of error correction capability in
terms of BER in AWGN and Rayleigh fading channels,
where we found that frozen bits in non-concatenated
Polar codes are strong in providing contributions to
the error correction capability, which is better than
the frozen bits even protected by other channel coding
schemes for the same code rate.

The rest of this paper is organized as follows. Section II
explains Repetition-concatenated Polar codes system design.
Section III evaluates the performances. Section IV concludes
the paper.

II. MATERIALS AND METHOD

There is no specific material required to implement either
OPC or CPC codes. A series of computer simulations is
conducted to evaluate the performance of the OPC and CPC
with the designed frozen bits. The system model is illustrated
in Fig. 1. We consider u as the information bits sent in the
block length of N = 16 bits with the channel coding rate
R = 3/16. Block C is an encoder u to x. In this paper,
we use repetition-concatenated Polar codes to evaluate the
efficient of frozen bits protected by either regular or irregular
repetition codes.

The encoded (x) is modulated by modulator M using
binary phase shift keying (BPSK) modulation. Modulated
signal (s) is sent through the channels and received at the
receiver as

y = h · x+ n, (1)

with h = 1 for the AWGN channel and

h =
A+ j ·B√

2
, (2)

for block Rayleigh fading with A ∼ (N , 1), B ∼ (N , 1)
follows the Gaussian distribution with variance of 1 and zero
mean, which is in MATLAB written with randn function
and j =

√
−1. Variables random n ∼ (N , σ2) is the AWGN

noise vector having a Gaussian distribution with variance
σ2 and zero mean. We consider narrowband transmissions.
However, the extension to broadband transmission is rather
straightforward.

Signal y is received by the receiver antenna and demodu-
lated as ŷ. Log-likelihood ratio (LLR) of y is then taken for
decoding. The final stage is the process of decoding C−1

with successive cancellation decoding. The results are then
used for repetition decoding prior to the conversion to its
original bit using hard decision.

The design of IR-CPC and RR-CPC codes is with R =
3/16 with a repetition rate to 9 resulting a repetition coding
rate of R = 1/9. The detailed scenarios for IR-CPC and
RR-CPC codes are shown in Table I and Fig. 2.

Fig. 2 shows bipartite graphs of the parity check matrix
of IR-CPC and RR-CPC codes with the degree distribution
of

Λ(x) =
1

16
x2 +

1

16
x3 +

1

16
x4. (3)
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TABLE I
SCENARIO OF REPETITION-CPC CODES AND THE OBTAINED CHANNEL CODING RATE R.

Repetition Concatenated
Polar Codes

Rate (R)
ScenarioEncoding Component

Polar codes Irregular Repetition codes Regular Repetition codes
IR-CPC codes 9/16 3/9 - 3/16 (Repetition 9)
RR-CPC codes 9/16 - 3/9 3/16 (Repetition 9)

Fig. 2. Bipartite graph for parity check matrix of IR-CPC and RR-CPC
codes for coding rate of R = 3/16.

and
λ(x) =

3

16
x3. (4)

for R = 3/16, respectively, where black circle represents the
information bits.

A. Transmitter

Based on the system model presented in Fig 1, the
transmitter has two main processes, encoder and modulator.
Encoder is based on Polar codes, while the modulator is

Fig. 3. A 2× 2 kernel of Polar codes with channel capacity W .

mapping the encoded bits into BPSK symbols. The initial
information bit u is encoded with some frozen bits. The
frozen bits position is determined using the Bhattacharyya
parameters, for binary erasure channel (BEC), as:

Z(W ) = e−R·Eb
N0 (5)

Z(W−) = 2Z(W )− Z(W )2, (6)
Z(W+) = Z(W )2, (7)

which is the opposite of mutual information and capacity
taking value between 0 and 1 for BEC and Eb/N0 is the
energy bit per noise spectral density. The channel capacity
is therefore C = 1 − Z(W ). Z(W−) and Z(W+) is the
Bhattacharyya for 2× 2 kernel Polar codes as in Fig. 3 used
to determine the position of information bits and frozen bits,
of which the channel is polarized to C1 = 1− Z(W−) and
C2 = 1− Z(W+).

This paper assumes that u in Fig. 1 has included frozen
bits, which by default set to 0 in this paper. The Polar codes
encoder can be modelled using matrix multiplication opera-
tions between u with the generator matrix corresponding to
the block length codes N = 2n expressed as

Gm = T⊗n
2 , (8)

where ⊗ is a Kronecker operation. The encoded bits are then
expressed as

xN = uN ·Gm. (9)

xN is the output of encoding with blocklength N . In this
paper, the decoder uses a simple successive cancellation
decoding, of which the advanced version has been presented
in [20].

B. Receiver

Based on the CPC transmission system model presented
in Fig. 1, the receiver has two main blocks, i.e., demapper
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Fig. 4. An example of constructing the repetition concatenated Polar codes with 4 bits and f being the frozen bit.

M−1 and decoder C−1. The a priori LLR for the successive
cancellation decoding (SC) is defined as

LA = log
P (x = +1)

P (x = −1)

=
2

σ2
· ŷ, (10)

with ŷ being the output of demapper M−1.
The decoding for 2× 2 kernel of Polar decoder is shown

in Fig. 3, where the LLRs from the antenna are L0 and L1.
LLR λ0 emanating from the XOR operation is expressed as

λ0 = L0 � L1 (11)

= 2× tanh−1(tanh
L0

2
· tanh

L1

2
) (12)

≈ sign(L0) · sign(L1) ·min{|L0|, |L1|}, (13)

to obtain estimate bit û0 via a hard decision (except if u0 is
a frozen bit). On the other hand, the LLR for bit û1 is

λ1 = (−1)û0 ∗ L0 + L1. (14)

The û1 is the hard decision bit obtained from λ1. In this
paper, we perform the further decoding, therefore λ0 and
λ1 are kept. At the end of the decoding the LLR a bit of
information is obtained by adding up the value of the LLR
of repetition codes. The sum of LLR presented in Fig. 4 is
expressed as

LF = Lpc3 +

dv−1∑
i

Lai , (15)

which is the sum of all LLR entering to the repetition
decoder. The final results are then obtained by converting
LF into bits 0 and 1 by using hard decision.

III. RESULTS AND DISCUSSION

The results of in this paper are divided in to two parts.
First, we present BER performances of the investigated rep-
etition concatenated Polar codes to observe the characteristic
of the error correction capability as new codes. Second, we
evaluate the effectiveness of repetition concatenated Polar
codes as new codes compared to the original Polar codes.
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Fig. 5. The BER performances of IR-CPC and RR-CPC codes with their
constituent elements under AWGN channels.

A. Performance of Repetition Concatenated Polar Codes and
Their Components as New Coding Scheme

The performances of BER IR-CPC and RR-CPC codes
compared to its constituent component is aimed to confirm
that the combination of repetition codes and Polar codes
increases the capability of the error correction of Polar codes.
IR-CPC and RR-CPC codes in this paper have channels
coding rate of R = 3/16 constructed from OPC R = 3/16
and original regular and irregular repetition codes R = 3/9.
BER performances are evaluated under AWGN and Rayleigh
fading channels.

Fig. 5 shows the performance of BER IR-CPC and RR-
CPC codes under the AWGN channels, where theoretical
BER of uncoded BPSK is shown as a reference. BER
performance of RR-CPC and IR-CPC codes reach 10−4

at the SNR of 3 to 4 dB, while the constituent codes,
OPC R = 9/16, original irregular repetition (OIR, and
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Fig. 6. The BER performances of IR-CPC and RR-CPC codes with their
constituent elements under Rayleigh fading channels.

original regular repetition (ORR) codes R = 3/9 have worse
performances.

These results confirmed that combination of Polar codes
with repetition codes improve BER performances from its
constituent codes. Fig. 5 confirms that the final BER per-
formances are almost the combination of BER curves of the
constituent codes. However, Polar codes have additional error
correction capability from repetition codes as confirmed in
Fig. 5 that Polar codes has worse performance only at low
SNR region, but good performance at high SNR region.

Fig. 6 shows the BER performances of RR-CPC and
IR-CPC under Rayleigh fading channels, where theoretical
uncoded BPSK is used as a reference. The IR-CPC and RR-
CPC codes has BER of 10−2 at SNR of 12 dB, while the
constituent codes, i.e., Polar codes R = 9/16 has BER of
10−2 at SNR 13 dB; the original repetition has BER 10−3

at SNR 10 dB. This figure confirms that the combination
of Polar codes with repetition, in one side increases BER
performance when compared to Polar codes OPC R = 9/16,
but in other side has worse performances compared to the
original repetition codes R = 3/9. This happens probably
because the location of frozen bits in the repetition concate-
nated Polar codes cannot adapt to the dynamic changes of
Rayleigh fading channels.

B. Comparison of Repetition Concatenated Polar codes and
Original Polar codes

Performances of repetition concatenated Polar codes with
OPC is evaluated at the same rate. The comparison aims
to obtain the best coding scheme, which is OPC or CPC
codes. We evaluate the repetition concatenated Polar codes
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Fig. 7. The BER performances of IR-CPC and RR-CPC codes compared
to that of the OPC under AWGN channels.
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Fig. 8. The BER performances of IR-CPC and RR-CPC codes compared
to that of the OPC under Rayleigh fading channels.

and OPC at a rate R = 3/16 under AWGN and Rayleigh
fading channels.

Fig. 7 shows the BER performances of RR-CPC, IR-CPC
codes, and OPC under AWGN channels, where theoretical
uncoded BPSK is shown as a reference. The BER of OPC is
10−4 at SNR of 0 dB, while the BERs of IR-CPC and RR-
CPC codes are 10−4 at the SNR of 3.5 dB. These results
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indicate that the capability of IR-CPC and RR-CPC codes
is still weak compared to the OPC for the same channel
coding rate. This fact may also indicate that the frozen bit
of OPC is strong compared to the encoded bit protected by
the repetition codes.

Fig. 8 shows the BER performances of RR-CPC and IR-
CPC codes compared to the OPC in the Rayleigh fading
channels, where the theoretical uncoded BPSK is shown as
the reference. The original Polar codes has BER of 10−2

at SNR of 7.5 dB, while the IR-CPC and RR-CPC codes
have BER of 10−3 at the SNR beyond 12 dB. The results
indicate that the error correction capability of the RR-CPC
and IR-CPC codes are still worse in Rayleigh fading channel
compared to that of OPC at the same channel coding rate.
This result indicates that the frozen bit of the OPC is strong
compared to bit protected the repetition codes.

IV. CONCLUSION

This paper has studied the capability of error correction
codes of OPC and CPC to evaluate the contribution of frozen
bits for error correction. The evaluation was performed using
a series of computer simulations for short Polar codes with
a block length of 16 bits. This paper has provided results in
terms of BER performances for IR-CPC and RR-CPC under
AWGN and frequency-flat Rayleigh fading channels. This
paper found that the OPC with traditional frozen bits are
better than the IR-CPC and RR-CPC codes with less frozen
bits even the information have been protected by the outer
codes. These results indicates for short block-length that the
frozen bits of OPC is powerful and may not be replaced
by other bits, although the bits are protected by other outer
codes resulting in concatenated Polar codes. The results
of this paper are expected to be a reference in the future
development of Polar codes considering the modification of
frozen bits for better performances.
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