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Abstract— Forest ecosystems are exposed increasingly to a variety of human activities and accentuated by climate change. With its 

Mediterranean climate, Northern Morocco is very hot, which exposes forests to widespread fires. This work aims at the delineation of 

wildfires and the spectral characterization of burnt vegetation as well as the characterization of the fire severity in the North of Morocco 

by using Landsat-8, Sentinel-2 spectral data, and topographic data. The methods used include the derivation of wildfires spectral indices 

and the computation of topographic parameters (elevation, slope, exposure) from SRTM and PALSAR digital elevation models. Then, 

the Spectral Angle Mapper (SAM) classification was used to map forest fires' severity. Furthermore, we have compared the severity 

classes obtained from the SAM method applied to Landsat 8 and Sentinel 2 data, with different spectral indices specialized in detecting 

wildfires, on the one hand, and topographic data, on the other hand. Results showed that MIRBI and NBR indices allow a better 

characterization of burned areas than BAI index. For its part, SAM classification provides a fair characterization of the severity classes 

of burnt forests. It has also been shown that the MIRBI index and sun exposure are strongly correlated with severity classes. The 

obtained maps show the spatial heterogeneity of burns severity and how they interact with topography. These maps may help land 

resource managers and fire officials predict areas of potential fire hazards and study vegetation regrowth areas after fires. 
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I. INTRODUCTION

Forest fires are an essential disturbance factor in forest 

ecosystems, affecting the landscape, the natural vegetation 

cycle, ecosystem structure, and function [1], [2]. Also, 

changes in albedo and surface temperature after forest fires 

can significantly impact regional and global climate by 

changing surface energy flux patterns [3].  

Fire damage estimation, such as burnt area and fire 

severity, is precious data for understanding how an ecosystem 

responds to fire disturbance [4], [5]. However, such field data 

are rarer, and their collection is generally costly in terms of 

time, financial, and human resources. The severity of a 

wildfire refers to her damage to the ecosystem, including tree 

mortality, and its impact on the quality of germination beds 

and underground parts of plants responsible for post-fire 

regeneration [6], [7]. Thus, weather conditions coupled with 

fuel properties will influence fire's behavior, affecting its 

severity; the latter is rarely evaluated, even from field data [1]. 

Remote sensing offers suitable alternatives to in situ 

measurements. Satellite remote sensing contribution to 

wildfire management is primarily concerned with identifying 

and monitoring burned areas and estimating fire damage [1], 

[8]-[10]. Therefore, it is useful in the analysis and planning of 

the rehabilitation of burned areas [11].  

In this work, we aim to characterize the burned areas in the 

Moroccan Rif forest using satellite data from Landsat-8 and 

Sentinel-2. The main objectives of this work are as follows: 
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• Use of spectral indices and Spectral Angle Mapper 

(SAM) a supervised classification method for mapping 

burn severity. 

• Study of the correlation between severity, spectral 

indices, and topographic parameters.  

• Location, measurement, and mapping of fires that 

occurred in the Moroccan Rif in August 2016 

• Spectral characterization of burned vegetation 

II. MATERIALS AND METHOD 

A. Study Area and Data Used 

1) Geographical and Climatic Situation: The Moroccan 

Rif region is located in northern Morocco (Fig 1), 

characterized by a Mediterranean climate, with a scorching 

and dry summer influenced by both the Mediterranean Sea 

and the Atlantic Ocean.  

 

 

Fig. 1 Geographic location of the study area 
 

This area was chosen as a study area because of its extensive 

forest cover and high exposure to forest fires. Indeed, 45% of 

fire departures are declared in this region, with 70% of the 

total area burned in Moroccan forests. 

2) Forest Fires in Morocco: In Morocco, the forest 

domain is characterized by high biodiversity and high 

vulnerability to forest fires. Figure 2 shows the evolution of 

the number of fires from 1960 to 2015, showing that fires' 

frequency is becoming more and more critical. The average 

burned area per year is 3000 ha and for an average fire starting 

of 280 ha, which gives 12 ha/fire/year of the burnt surface. 

[12].Forests cover an area of 5, 814,000 hectares, with 63% 

of deciduous trees (holm oak, cork oak, acacia, and argan tree) 

and 20% of softwood (cedar, juniper, cypress, and pine). The 

other 17% occupied by lower formations (maternal and 

secondary species) often result from forest degradation. 

However, these forest formations are under pressure from 

various sources: difficult conditions for regeneration, climate 

change, unfavorable socio-economic environment, and a 

variable reforestation rate (3 to 40%), making them even more 

vulnerable.  

 

 
Fig. 2 Statistics on forest fires in Morocco [12] 

3) Satellite Data: The spectral data used in this study are 

two images, one post-fire Landsat-8 from the OLI 

(Operational Land Imager) sensor acquired on 10/08/2016 

and the other post-fire Sentinel-2 image from the MSI 

(Multispectral Instrument) sensor acquired on 25/08/2016. 

Both sensors cover the visible, near-infrared (NIR) and Short-
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Wave Infrared (SWIR) spectrum. The comparison between 

the two sensors is shown in Fig. 3. 

 
Fig. 3 Comparison between OLI Landsat-8 and MSI sentinel-2 spectral bands 

 

Shuttle Radar Topography Mission (SRTM) is an observation 

campaign to establish digital terrain models (DTM). It is the 

first high spatial resolution digital elevation model (DEM)so 

complete on Earth with 30 m [13], [14]. The Phased Array 

Type L-band Synthetic Aperture Radar (PALSAR) is an 

active microwave sensor using the L-band frequency to 

achieve cloud-free and day-and-night land observation. It 

provides higher spatial resolution DEM with 12.5 m. 

4) Fields Data: In total, five forest fires that occurred in 

August 2016 were considered in this study (Fig.4). 

 

 

 

 
Fig. 4 Geographical location of the forest fires studied 

 

B. Methodology 

Figure 5 presents the methodology followed in this study 

and is composed of two main stages, i.e., preprocessing, 

treatment. Preprocessing, which consists of radiometric and 

atmospheric corrections of Landsat-8 OLI and Sentinel-2 

MSI images. They are followed by transforming the 

coordinate systems for the different data used to provide the 

same coordinate system to be superposed. Treatments include 

some issues below: 

• The calculation of forest fires' spectral indices, the 

visual interpretation of the colored composition 

(NIR/Red/Green/RGB). 

• The calculation of topographic parameters (elevation, 

slope, exposure) from a DTM. 

• The use of SAM classification to map the fires severity. 

• The use of spectral indices for the characterization of 

wildfires. 

• The study of the relationship between severity, spectral 

indices, and topographic parameters. 

1) Pre-processing of Satellite Images: Atmospheric and 

radiometric corrections are essential steps in the processing of 

satellite images. They are used to subtract from the sensor's 

measured signal the target's signature, induced by 

atmospheric effects (absorption and scattering). First, the 

radiometric correction was performed by transforming the 

digital count into apparent reflectance. Second, atmospheric 

correction is the transformation of the apparent reflectance 

into the ground reflectance. 
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Fig. 5 Flowchart of the work methodology 

 

2) Transforming the Digital Account into Radiance: 

Through the radiometric image calibration method which is a 

process of conversion from the digital count (DN) to 

reflectance values using standard equations. First, the Landsat 

OLI image is converted to radiance values according to 

equation 1: 

L(λ) = A(λ) ∗ (CN(λ) − QCALMIN) + B(λ) (1) 

Where, 
L(λ): Apparent luminance (Radiance). 

CN: Digital count for each pixel of the image. 

Λ: Wavelength. 

A(λ) Gain = ((LMAX-LMIN)/ (QCALMAX-QCALMIN)).  

LMAX and LMIN: Calibration constants. 

QCALMAX and QCALMIN is the maximum and minimum 

values of the numerical account. 

B(λ) Offset: LMIN. 

3) Transformation of Apparent Luminance to Apparent 

Reflectance: After conversion to radiance, the image was 

converted to apparent reflectance. The relationship between 

apparent luminance and apparent reflectance is given by 

equation 2: 

ρ∗(λ) =
π.Dt

2.L∗(λ)

Es(λ).μs
 (2) 

Where, 

Es(λ): Solar Irradiance (W/m2.µm). 

Dt: Average Earth-Sun distance in astronomical units. 

µs: cos(θs), θs is the solar zenithal angle. 

4) Atmospheric Correction: This correction aims to 

transform the radiance to the surface reflectance by 

eliminating the errors caused by the atmosphere. In this study, 

we have used Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) method to 

correct the Landsat-8 OLI image, while we have used the 

Sent2Corr toolbox of the Sentinel-2 Toolbox software to 

correct the Sentinel-2 MSI image. 

5) Spectral Characterization of Wildfire: Collecting the 

spectral signatures of burnt vegetation is quite simple using 

ENVI software. After the visual interpretation of several 

colored compositions, it seems that the composition 

NIR/Red/Green (RGB) gives a good view of the burned areas 

that appear as black areas. Based on the literature, these areas 

have low reflectance at the NIR level and high reflectance at 

the SWIR level, which is the opposite of healthy vegetation's 

reflectance.  
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6) The computing of Spectral Indices for the Mapping of 

Wildfire: The principle of these operations is to perform, for 

each pixel, complicated mathematical operations involving 

the numerical values observed for this pixel in the different 

spectral bands. For example, one could calculate the sum of 

spectral values of a three-component image for each pixel, 

and the result is stored in a digital image with the same size 

as the original images. After calculating the spectral indices, 

we delimited burned surfaces, thus creating ROI (Region of 

Interest). The minimum, maximum, and average values of 

burnt vegetation indices were obtained automatically for each 

fire. 

TABLE I 

 SPECTRAL INDICES USED IN THIS STUDY 

Spectral Indice Equation Source 

NDVI 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

[15] 

BAI 1

(0.1 − 𝑅)2 + (0.06 − 𝑃𝐼𝑅)2  
[16] 

MIRBI  10𝑆𝑊𝐼𝑅2 − 9.8𝑆𝑊𝐼𝑅1 + 2 [17] 

NBR 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

[18]  

7) SAM Supervised Classification of the Severity of 

Forest Fires: The SAM method was used to classify the 

severity of the fire. The latter was chosen because it showed 

its potential in the detection of burned areas [19], [20]. This 

classification is based on measuring the angular similarity 

between the spectrum of each pixel of the image and the 

reference spectra using a user-defined angle "α". The 

reference spectra can be measured directly in the field using a 

spectroradiometer or extracted from the image. Assigning a 

pixel of the image to a given class is based on the value of α 

angle. The pixel will be assigned to its most similar spectral 

class. Noting that reducing α value, the expected similarity is 

more significant than [21]. In our case, the reference spectral 

signatures used to run the SAM were extracted from the 

image. They represent five fire severity classes according to 

the literature and a class of healthy vegetation. 

8) Relationship between Severity, Spectral Indices and 

Topographic Parameters: Understanding the factors 

controlling fire severity requires considering the scale of how 

these factors work. This approach highlights the relationship 

between forest fire severity and topographic parameters. To 

this end, the ArcGIS software was used to calculate 

topography parameters and extract statistical data from 

severity classes. 

III. RESULTS AND DISCUSSION 

A. Spectral Characterization of Burned Vegetation 

In the visible spectrum, the reflectance of burned areas with 

intense fires, where vegetation has been strongly affected, 

decreases because of leaf chlorophyll loss. However, the 

reflectance of shade, water, wetlands, and dense coniferous 

forests is similar and can lead to confusion [22], [23]. 

The NIR is known to be strongly reflected by chlorophyll-

A, which makes it easy to distinguish between healthy and 

recently burned vegetation. The reflectance of burned areas in 

the NIR is much lower than that of healthy areas. This 

difference will allow for the discrimination of burn severity 

degrees. 

In the SWIR, the reflectance increases when the plants' 

humidity decreases; the increase in reflectance in the SWIR is 

more significant than in the visible spectrum. Finally, the 

reflectance of burned areas in SWIR is lower than that of 

unburned areas (bare soil, rock outcrops, or urban areas) and 

higher than the reflectance of healthy vegetation and water 

[22], [23]. Fig 6 and 7 show the spectral signatures from the 

Landsat-8 OLI and Sentinel -2 MSI images. In overall, the 

increase in reflectance over burnt surfaces is higher in the 

SWIR than in the visible and proportional to the burn severity 

and thus considered the NIR/SWIR bispectrality space more 

appropriate for burnt area discrimination and severity 

mapping than the classical visible/NIR space used often in 

remote sensing of vegetation. 

 
Fig. 6 Spectral signatures of severity classes (left: signatures from the literature[24], right: signatures extracted from Landsat-8 OLI image) 
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Fig. 7 Spectral signatures of severity classes (left: signatures from the literature[24], right: signatures extracted from our Sentinel-2 MSI image) 

 

B. Characterization of Forest Fires using Spectral Indices 

1)  Comparison of Forest Fire Spectral and Vegetation 

Index NDVI:  The values of the BAI, MIRBI, NBR, and NDVI 

indices give different values in healthy and burned areas 

(Tables 2-3). The NDVI values are very low but not negative, 

which shows that the burned areas were rich in vegetation. 

The other fire indices have maximum values in burned areas, 

and they take minimum values in areas where there is healthy 

vegetation except the NBR, which shows the opposite. 

Making the visual interpretation of the spectral indices in 

Figures 8-10, we note that MIRBI and NBR give the best 

results compared to the other indices, while NBR-S2 is better 

than NBR-OLI. This result can be explained by the fact that 

the NIR/SWIR bispectrality space has a stronger discriminant 

ability for burned surfaces than the classical NIR/visible 

space since MIRBI and NBR use NIR and SWIR, 

multispectral bands, while BAI uses only NIR band.  

This finding corroborates well with the results of Pereira et 

al. [23] who demonstrates that the SWIR/NIR has, in general, 

the higher capability to identify burns than the visible range, 

and the SWIR spectral region is also much less sensitive to 

atmospheric disturbances. The outperformance of Sentinel 2 

NBR may be due to the high spatial and spectral resolution of 

this sensor. 

The BAI does not discriminate well with OLI and gives an 

awful result with Sentinel-2; this is due to the coefficients 

used in the BAI equation, which is only adapted to the 

Landsat-8 data. 
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Fig 8 Maps of spectral indices (NDVI, BAI, NBR, MIRBI) for Laarach Forest from Landsat-8 and Sentinel-2 data 
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Fig. 9 Maps of spectral indices (NDVI, BAI, NBR, MIRBI) for Boujedyane Forest from Landsat-8 and Sentinel-2 data 
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Fig. 9 Spectral index maps (NDVI, BAI, NBR, MIRBI) for Ikawen, Khlalfa and Talghounte forests from Landsat-8 
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2) Determination of Index Values for Burnt Vegetation:

To map burned forests, it is essential to extract the values from 

the corresponding indices. In this case, we used the automatic 

method of extracting the statistics using ROI Stats tool 

implemented in the Envi software. Tables II and III show the 

ranges of BAI, NBR, and MIRBI values for mapping burnt 

vegetation. These values are different from those of healthy 

vegetation, noting that MIRBI and NBR give the best 

separation compared to BAI, which may be related to the fact 

that both indices are based on the SWIR better characterizing 

burnt forests as discussed above.  

TABLE II 

SPECTRAL INDEX VALUES CORRESPONDING TO THE HEALTHY AND BURNED FOREST FOR LANDSAT-8 OLI 

BAI Healthy forest 

FIRE Min Max Mid Min Max Mid 

Laarache 3.72 20.18 12.58 5.79 10.47 8.34 

Boujedyane 7.52 28.00 15.86 5.65 9.28 6.86 

Khlalfa 6.48 29.27 19.42 7.13 14.32 9.05 

Ikawen 5.79 30.49 19.22 6.36 10.53 7.98 

Talgounte 14.12 19.28 16.88 7.20 10.63 8.48 

MIRBI Healthy forest 

FIRE Min Max Mid Min Max Mid 

Laarache 1.06 2.48 2.06 1.04 1.24 1.14 

Boujedyane 1.32 2.44 1.99 0.99 1.18 1.11 

Khlalfa 1.40 2.52 2.25 1.22 1.58 1.32 

Ikawen 1.43 2.42 2.09 1.08 1.40 1.26 

Talghounte 1.70 2.38 2.16 1.13 1.41 1.26 

NBR Healthy forest 

FIRE Min Max Mid Min Max Mid 

Laarache -0.44 0.36 -0.17 0.24 0.62 0.46 

Boujedyane -0.42 0.30 -0.20 0.42 0.65 0.57 

Khlalfa -0.51 0.12 -0.35 0.34 0.68 0.59 

Ikawen -0.45 0.21 -0.26 0.42 0.67 0.56 

Talghounte -0.38 0.03 -0.25 0.30 0.67 0.52 

TABLE III 

SPECTRAL INDEX VALUES CORRESPONDING TO THE HEALTHY AND BURNED FOREST FOR SENTINEL-2 MSI 

BAI Healthy forest 

FIRE Min Max Mid Min Max Mid 

Laarach 5.02 37.53 21.58 7.02 12.08 9.32 

Boujedyane 3.10 34.25 16.77 5.97 11.75 8.21 

MIRBI Healthy forest 

FIRE Min Max Mid Min Max Mid 

Laarach 2.02 2.07 2.03 2.03 2.04 2.03 

Boujedyane 2.02 2.10 2.04 2.02 2.03 2.03 

NBR Healthy forest 

FIRE Min Max Mid Min Max Mid 

Laarach -0.65 0.41 -0.28 0.21 0.57 0.37 

Boujedyane -0.68 0.42 -0.41 0.09 0.65 0.56 

C. SAM Classification Severity Maps

We use the extracted spectral signatures in the SAM

classification. The maps resulted are shown in Fig 11 and 12. 

They show that the healthy forest in the OLI and Sentinel-2 

images are well mapped as well as the other severity classes. 

However, there is a slight confusion between healthy forests 

and the very weak and weak class reported by different studies 

[25]–[27]. In general, the SAM classification has given 

satisfactory results in mapping the severity of forest fires. The 

latter showed small differences in the middle classes, high and 

very high severity classes. This difference may be due to the 

spectral difference between the two sensors. We have also 

used the same similarity angles in the SAM classification, and 

perhaps using a different angle for each sensor can reduce the 

difference in the resulting maps. These maps may help land 

resource managers assess the magnitude of environmental 

change caused by fire, the resulting level of costs in socio-

economic terms, and manage areas of vegetation regrowth 

after fires. 
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Fig. 10 SAM Classification Severity Maps – Landsat-8 OLI 
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Fig. 11 SAM Classification Severity Maps - Sentinel 2 

D. Relationship between Severity, Spectral Indices, and

Topographic Parameters

Figures 14 and 15 show a strong relationship between

severity classes, spectral indices, and topographic parameters. 

We notice that MIRBI and NBR are the most correlated 

spectral indices with the severity classes noting that MIRBI 

was slightly more successful. Across the five wildfires 

studied, the determination coefficient R² of MIRBI varies 

from 0.96 to 0.99 and 0.44 to 0.49 for Landsat8 and Sentinel-

2, respectively (Figure 13). 

As for the topographical parameters, we note that the 

heavily burned forests are exposed to the west, northwest, and 

southwest, which corresponds to the strong afternoon 

illumination (Figure 14). The slope also showed a negative 

correlation to severity, but not in all the studied forests. 

Intense fires are located towards the slight slopes. Human 

factors can explain this case, as urban areas and human 

activities are more intense on shallow slopes. Concerning 

elevation, it showed a low correlation in forests with a low 

elevation of less than 900 m (Laarache, Khlalfa, and 

Boujedyane), whereas it is positively correlated in forests 

with high elevation. The comparison of burn severity and 

topographic features reveals the complex phenomena behind 

a burned area. Studying the severity provides alternative tools 

to prevent future forest fires in the function of the topography, 

vegetation, or environmental factors. 
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Fig. 12 Summary of R² correlation between severity class correlation and spectral indices, elevation and slope 

Fig. 13 Correlation of severity classes with sun exposure 

IV. CONCLUSION

This work focused on studying forest fires in the Rif of 

Morocco using Landsat-8, Sentinel-2 spectral data, and 

topographic data. First, a spectral characterization was carried 

out, which showed that deterioration of the inner leaf 

structure, decrease in chlorophyll content, and moisture in 

burned vegetation leads to an increase in spectral response in 

the wavelength of the SWIR and decrease in NIR.  

In a second step, spectral index methods and the Spectral 

Angle Mapper method were used. The results of this work can 

be classified as follows: 

• The NIR/SWIR bispectrality space is appropriate for burnt

area discrimination and severity.

• The ranges of BAI, NBR, and MIRBI values for mapping

burnt vegetation have been identified,

• MIRBI and NBR give the best cards by noting that NBR-

S2 is better than NBR-OLI,

• SAM classification has given satisfactory results in fire

severity mapping and requires field validation to quantify

classification errors,

• The two indices MIRBI and NBR are the best in the

characterization of severity with a slight superiority of

MIRBI,

• The severely burned forests have a West, North-Western,

and South-Western exposure, which corresponds to the

strong afternoon illumination,

• Severely burned forests are sometimes located in shallow

slopes.

• Characterizing the severity provides alternative tools to

prevent future forest fires in the function of the

topography, vegetation, or environmental factors.
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