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Abstract—Communication-based train control (CBTC) system is an advanced train signalling and control technology which is
developed using the moving block signalling (MBS) framework. The CBTC system has been shown to be capable of improving the
operational efficiency, line capacity and safety of the railway operation. The main objective in implementing the MBS framework in
CBTC system is to minimize the train headways through the utilization of an inter-train continuous communication system that
deter mine and control the position of each train more precisely. Oneimportant challengein such an implementation is the fulfillment
of the necessary requirement of having highly accurate train localization method to ensure the safety of the short headway operation.
This paper describes the results from experimental examination and application of a synchronization control strategy for the CBTC
system using an unscented Kalman filter (UK F)-based sensor fusion approach as the localization method. In the proposed approach,
thetrain localization task is performed using an UK F-based sensor fusion method which fuses measurement data from speed sensors
and radio freguency identification tags. A synchronization control approach to ensure the safety movement of the train convoy in
curved railway tracks under the MBS scheme is then proposed. The results presented in this paper show that the proposed
localization and synchronization control methods can significantly improve the localization accuracy and reduce the inter-train
headways.

Keywords— CBT C; moving block signaling; synchronization control; unscented Kalman filter.

therefore among the most essential issues in Indonesian rail

I. INTRODUCTION transport systems development.
The demand for more efficient rail transportation systems The CBTC system Isa m_odern advanced train signaling
and control technologies which have been developed under

is currently increasing in Indonesia, especially in densely )
populated regions such as the Greater Jakarta area of thii® framework of MBS scheme [2]-[4]. Unlike the more

DKI Jakarta province. For instance, the currently operating raditional Fixed Block Sgnaling (FBS) scheme which

KRL Commuterline (KRLC) that serves Jakarta and its partitions the rail track into several fixed/static sections or
neighboring cities has for a while, been facing the issue of S€9ments named "blocks” to determine the occupancy status

overcapacity. A recent report [1] has shown that the of each of such blocks (cf. Fig. 1), the MBS scheme uses a

operational load of the KRLC in 2017 has reached as muchcontinuous communication system which connects each train
n the track and the wayside signaling equipment to

as 860,000 passengers/day (with a 17% annual growth rate . e .
ynamically separate and maintain a safe distance between

and caused significant overcapacity during the peak™”' . . X
operational hours. Such an overcapacity is further adjacel_'lt trains b_ased on a predefined safe operational
complicated by the suboptimal operational efficiency of the scelr;arlo [2] b(ICf Ff'g' _2)._f'_|'he 'l\/lBS ;ch_eme r?ashbezn ShOV\;I’l
train traffic due to the use of aged signaling and control to be capable of significantly reducing the headway o
systems with degraded performance. Increasing the “neadjacent trains and thus increasing the track line capacity. To
nsure the accuracy and safety of the MBS scheme

capacity and at the same time ensuring the operational safet | . . o
of the railway transportation systems such as KRLC are mplementation in CBTC system, reliable train localization
and control modules are inevitably needed.
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A. Materials

Two train miniatures, denoted as train A and B are used in

JE——1=N IC——1=N the experiment to perform the MBS scheme operation. As

_ _ - shown in Fig. 3, three stations are defined on the track,

Fig. 1 Fixed Block Signaling (FBS) scheme. namely the main station, station A and station B. The main
station is where both trains can stop while each of the
S p— P — S p— remaining two is where the corresponding train can stop. In
'Ew:]g\ 'EEWZIQ\ ‘EWZIQ' the experiment, each train will stop twice (each for a few
seconds), the first at the main station and the second at their
respective station.

The standard approach to perform the train localization ~Each of the two train miniatures is equipped with encoder
task in the conventional FBS scheme mainly relies on thewhile twelve RFID readers and a NodeMCU microcontroller
use of a track detection sensor such as track circuit or axleare used as wayside sensor and onboard controller. The
counter [3], [4]. The main limitation of this approach is that RFID tags play the role of balises in real railway system,
it is a static method which can only determine the occupancywhereas the NodeMCU collects all sensor data and then send
status of a track segment (i.e. it does not provide real-timethem to a computer located in the wayside unit through a
information about the exact position of each train in the wireless communication link and MQTT protocol. Inside the
occupied track segment). In order to implement the MBS computer, the UKF-based SF algorithm is coded in Matlab.
scheme which requires real-time and accurate train positionThe localization algorithm is first developed to predict the
information, more reliable train localization methods are train position using train speed data from encoder. Once the
strictly needed. One such method is shesor fusion (SF) [5] RFID data are available, the predicted position will then be
approach which combines data from various sensors tocalibrated using the proposed UKF-based SF method. Fig. 4
produce more accurate real-time localization information of depicts the architecture of the experimental setup.
moving objects such as trains. The SF method has been
widely applied for real-time localization purposes in the \ 4
fields of robotics and unmanned autonomous systems. Many . ol !
research results have particularly reported that the SF-based
localization results are generally more accurate and reliable
than those obtained using only individual sensor information.

In railway system applications, the SF-based localization

method was first introduced in [6] using linear Kalman filter

(KF) framework. Various SF-based localization methods RFID
were subsequently developed using such methods as Tags
extended Kalman filter (EKF) [7] and its combination with

GNSS [8]-[10], map matching [11], probabilistic weighted

fusion [12], visual-aided odometry [13], particle filtering [14] ‘ ’
and probabilistic data fusion [15]. See e.g. [16] for a recent R A

survey on train localization methods and developments.

Fig. 2 Moving Block Signaling (MBS) scheme.
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This paper reports the results of an experimental study o 1.02m i
and application of a SF-based synchronization control P >
approach for the MBS-based CBTC system. In the proposed 2m
approach, the train localization task is performed using an Fig. 3 Track dimension and RFID tags placement.

UKF-based SF method. As shown in [17]-[22], the UKF
often gives better estimation results than those obtained by
the EKF method, especially in the case highly nonlinear Matlab = — —
systems. In this paper, the UKF method is used to fuse wies 41
measurement data from speed sensors and radio frequenc C“ﬂjj;;éﬂ;}“’“ Sensor Data | Consol Signa
identification (RFID) tags. As for the control algorithm, this Protocol l
paper develops an extension of a previously developed
synchronization control approach [23] to allow its use on
more general curved track lines. Experimental results which Cesin Miniamre  Tedin Minizture
demonstrate the performance of the proposed methods on Speed Position |
CBTC prototype are reported. ¥

Encoder RFID Train Minature Motor

Train Miniature
Real Time Position

A 4

NodeMCU — — — — .I

Fy F y
IControl Signal

Il. MATERIALS AND METHODS

This section presents the materials and methods that were
used for implementing an UKF SF-based synchronization B. Méthods
control method on a lab scale CBTC miniature prototype. In this section, the basic algorithm of discrete-time UKF
that is used for implementing the SF method is presented.
Discrete-Time UKG Algorithm: In essence, the UKF is a

Fig. 4 System architecture for SF implementation.
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Bayesmn—type estimation .method which uses a probatyhsuc X =Xk-1k- 1)+\/(Nx +jPK-1k-1), (5)
transformation to approximate the statistics of nonlinear . i

systems [17]-[19]. Unlike the EKF method which W= 72Ny + ), (6)
propagates the states distribution through the first order

X A . where N, denotes the dimension of state variables and
linearization of the system dynamics, the UKF method x

i =3 — N, is a scaling parameter. These sigma points and

ins_tead generates a m_inir_nal_set of carefully chosen sampl eights may then be transformed using the system model in
points of the states distribution and then transforms them(l) to obtain a predicted value of the form

directly through the system model. Such sample points, also
known as sigma points, are chosen to capture the true first e A _
two moments of the state distribution. As such, when Xk k= D=1 f k= k= Dubk-Dw), (7)

propagated through the system model (cf. Fig. 5), these |n this regard, the mean of the state variables can be

points will also capture the posterior distribution of the determined using the so-calladkighted statistical linear
system’s moments. In this regard, the UKF method does notregression (WSLR) method to obtain

suffer the linearization-induced suboptimality issue that

often occurs in EKF implementation. . 2N,
XK Ik=1= 2 Wy, & [k=D) (8)
iz
Nonlinear Function
_>
As a result, the prediction errgeg,) and covariance
‘ (P(k|k — 1)) may then be determined as
Sigma Points Transformed Sigma Points
Fig. 5 An illustration of the sigma points transformation. e;q =X (k |k _1) - X(k |k - 1)1 (9)
. . . . . ey g 2Nx
_The algorithmic implementation of the UKF is initialized P(k| k-1 = 3 W[ e, I[e; I+Ry, (10)
with a set guesses on initial mean and covariance of the state i=1

vana_blgs, and afterward followed by two main steps, nfamEIywhereRW denotes the process noise covariance matrix.
prediction and correction steps. The prediction step aims to

estimate the future values of the state variables and output
based on the results of sigma points transformation. Whe
actual measurements are available, the algorithm switche
to the correction step which updates the previously obtained _
state and output predictions. These steps are then executed Yo k= 1k =D=x klk-1), (1)
recursively whenever new measurement data are available. Y, k= 1k-D=yx, k k-D+jJyR, klk-1), (12)
To describe the algorithmic implementation of the UKF,
consider the following discrete-time nonlinear system model.ith similar weighting values as the state variables sigma

points. Correspondingly, the predicted sigma points of the

Using the state variables prediction, a set of sigma points
for the output variables can be determined as

x(k) = fCe(k = D, u(k - 1),w) @) output variables may be obtained by transforming them
y(k) = h(x(k — 1),q) ) through the system’s output model in (2) to obtain
where x(k),u(k) and y(k) denote the state, input, and Y, k k=9=h(v, €~ 1lk-1,q) (13)

output variables, respectively, at discrete timg kieghile w . Using the WSLR method, the predicted output variables
andq are the process and measurement noises, respectively,ay then be computed as

Let %, andP,, respectively, denote the initial mean and

covariance of the state variables. Then the initial probability 2Ny

density function of the state variables can be defined and the yklk=-1)=> WY, k|k-2). (14)
recursion steps in the UKF can be performed in the following i=

steps (cf. [22], [23]).
ps (cf. [22], [23]) The residual errog;(k|k — 1) and residual covariance

performs the recursion of three tasks, namely state variables

prediction, output variable prediction and Kalman gain £ kk-D=Y, Klk-1-yK|k-D, (15)
calculation. Select the initial set of sigma poidsand its ' 2'NX
weightW; to capture the PDF of the state variables. These R klk-D=3Wlg klk-D]g |k -D]+R,. (16)
may for instance take the following forms. i=

3 whereR, is the measurement noise covariance matrix.
Xo =Xk-1]k-1), 3) a

Wo = J /(N + ), ) Based on the obtained prediction of the state and output
In addition, the values of (3)-(4) at tketh time step for the variables, the prediction of the cross covariance may then be
i-th state variables may be determined as follows. determined as follows.
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2Ny , maintain such a condition for a certain duration of time. The
Reklk-1)= Elwi [e;, Tk =D&, Ik -1I+R, (17) theoretical development of this approach was developed in
[23] for a particular form of straight-line track. The basic
At this point, the Kalman gain of the UKF may then be idea in that approach is illustrated in Fig. 6 which shows that
determined and updated recursively as the controller will be activated whenever a train enters a safe
distance zone as measured relative to the train in front of it.
In particular, the controller will automatically adjust the
braking of the following train, slowing it down or

2) Correction Step: The correction step utilizes the accelerating it up until a stable minimum distance is

actual measurement data from sensorgk]) to make achieved [23], [24].
corrections on the computed state variables and output
predictions. By using a similar routine as in the generic KF
method, the correction begins with the calculation of the
innovation variable of the form

K&)=R, k k-DRK|k-D. (18)

—> > —»
2:; dpg dum Va

Fig. 6 Activation of the synchronization control.

O(k) = z(k) - yk [k = 1). (19)

Using the innovatiow (k), the correction on the predicted

state variables and covariance can be performed as follows. Regarding the Figure 6, we define the notion Y

margin (d,,) as the measured distance between thextgi) (
and the noséxgy) of adjacent trains when they are at rest.
X(k|Kk) =Xk |k —1) + K(K)O(K), (20) Furthermore, we also define theaking distance dgy as an

estimated travelled distance after a train hits the brakes until
Pk k)=Pkk-1)-KK)R, k|k-DK(k). (21) a complete stop, i.e.:

The corrected values of the state variables and covariance
predlct|_on are then used in the next recursion of prediction-  d__ (x, (k),v5 (k)) = V2 /28.. (22)
correction iteration [17]-[22].

« Synchronization Control of CBTC Systems: where xz (k) andvg(k) denote, respectively, the position
The CBTC system generally consists of three major and velocity of the trai_rB, andp is the ma>_<imum braking
components, namely the wayside unit, on-board unit, andrate of the train (cf. Fig. 6). Now, we define the so-called

radio communication module between wayside and on-boardMnimum distance (dmin(k)) of the synchronization as the

units [2]-[4], [24]. The on-board unit consists of (i) on-board Sum of the safety margind{,) and the braking distance

position sensors and (ii) computers which process all such(dzg). i-€:

sensors and use them to control the train speed. The wayside

unit contains (i) the so-called automatic train supervision — _ -

(ATS) system which controls all the operated trains, (i) a O (K) = Xar = Xouy = Ay + dag (%5 (). Vs (k). (23)

zone controller and interlocking system which manage some In the MBS scheme implementation, the leading train can

predetermined areas in certain track line, and (iii) halt suddenly and is thus has a resemblance tdotiok

positioning tags which calibrate the train position as walls phenomenon [4]. Under this assumption, the braking

determined by the on-board unit. or decelerating dynamics of the following trafgy) can be
The MBS-based CBTC implementation relies on the so- derived by differentiating (25) to obtain

called movement authority which essentially is a real-time

information exchange system that provides to each train real-

time location data as well as command of movement among dxi _dxﬂ =id (Xg (K), Vg (K)) (24)

trains along a track segment/area [24]. While the MBS-based dk dk dk PETEETIEEE

CBTC has the potential to increase the line capacity, its _0dgg

current implementation does not provide a synchronization Va(K) ~vg (k) = 9

scheme which can ensure the attainment of a minimum ad 5d

possible headway among adjacent trains. The _|| 99%s _ 005

synchronization control scheme has been proposed for MBS- Pa (k) _K 0Xg +1JVB(k) VA(k)}/( ovg J (26)

based CBTC but its implementation remains limited to

straight line track topology [23]. In this work, we extend the wherepy is the the deceleration of the following train. As a

approach to allow its implementation on more general result, the value o3z can be determined from (26) as

curved track lines through the development of an algorithm

which maps curved train segments into appropriate and V. (K) =V, (K

equivalent straight-line track segment. B (k) = ﬁs%’ 27)

The main objective of synchronization control approach
in MBS-based CBTC system is to dynamically separate
adjacent trains by a minimum safety distance and then

od
Ve (K) ——
Xg ovg

PBs (K) (25)

with vy # 0 is assumed to hold. In the case where adjacent
trains start to move from rest (both train speed is zero), the
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acceleration of the leading) and the following traind) e |-| 1 Of Py |, | dtes €OSE) v (30)
can be computed as “lo 1 p., dt,_, sin@,) | ™

Py
A a(K) = KecePs, (28) wherepj andp; denote, respectively, the Cartesian basis
—1+,/1+ 4k and ordinate positions of the train at titnen the trackg,
g (K) =,35—2 (29) is the train orientation, ang, denotes the train speed. The
wherek,, is a constant. train k|nemat|c contains nonlinearities in the form of
trigonometric functions
. Experimental Consideration: A fusion scheme as shown in Fig. 7 was then developed

Several considerations are considered when implementind® Process the collected sensor data. This diagram shows that
the proposed UKF SF-based synchronization control method!WO Sensors are used in the experiment, i.e. encoder to

on a lab scale CBTC system miniature track prototype asl€asure the tr_a_in speed and RFID tag r_eaders o detect the
shown in Fig. 3. First, following the setup of the UKF train exact position. From the characteristics of these sensors,

method as described in Section I1.B.1, a model for the train W& found that the exact form of the train kinematic model in
miniature is derived. In this regard, the train miniature is (30) iS given by the following formula.
modeled as a rigid body with the following planar kinematic

equation. Pe| 1 01[Pr-1 [COS(Qk—l)
= +0,3] . 31
1] R | R S 6D

Encoder
data

Prediction step
of UKF

Only Encoder Data?

Daea Readiug

A 4 Encoder + RFID Data

Predicted
position

Encoder
+RFID
data

| Prediction step Predicted Correction Estimated .
v of UKF | position step of position Finish
UKF(RFID)

Fig. 7 Sensor fusion scheme applied in the experiment.

Using the obtained system model, the UKF procedure for
SF task can be implemented. The set of sigma points, weight,
and residual covariance for the implementation are defined

TABLE |
UKF PARAMETER USED IN THE ALGORITHM

below. The values of related parameters in these equation$ UKF Parameter
are summarized in Table 1. With these experimental model|  parameter Value Notes
and parameters, the UKF-based SF procedure described i Standard deviation of th J
: andard deviation of the used sensors.
Section 11.B.1 can be executed. o_encs_RFID 7:400 | Smaller value indicates better accuracy
and reliability.
Xi = Xo+ Aye (Xi ~ Xo) (32) Represent the sigma points distribution
o_ukf 0.001 | with respect to the mean value. Small
# -1, i=0 value means close-to-mean sigma points.
VVi': T it (33)
Wi . R
ol iz0 B_ukf 2 Represents the system distribution where

a value of 2 means Gaussian distribution

R =W, +14 By 02 kYo -9)(Yo-+R  (34)

Secondly, the implementation of the synchronization
control for MBS-based scheme was performed based on the
following scenario and rules.

« The two trains depart from the same initial station

« The following train maintains the safe distance with

the leading train and must stop when the leading train
is picking up passengers at a station
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- Both train arrive at the same station

Essentially, these conditions are used to ensuCellason-
free operation of the trains. The used synchronization control 18+
algorithm receives the train positiom,(@nd xz) from the
UKF-based SF result, whereas the train spegdafduvg)
are determined from encoder sensor data. The 14f
synchronization control task is evaluated using a predefined
safe distance parameter af,;,(k) =27cm and an -
acceleration rate ok,.=—1. The chosen minimum % o
distance essentially sets the inter-train minimum distance to g3}
be the same as the train length. Based on the describe
synchronization control approach, the oer
acceleration/deacceleration rgi®;) of the following train 0.4}
can be determined and then sent to the actuating motor to b
calibrated to a train speed valug) of the form

Position of Train Miniature by Encoder

12 ¢

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Ve (K +D) = v, (k) + B, (KA, (35) )

. . . Fig. 9 UKF-based SF implementation result (trial 2).
whereAt is the sampling time of the encoder.

IIl. RESULTS ANDDISCUSSION We further compare the performance of the localization
_ when using single sensor data (i.e. encoder) and that when
A. UKF-based SF Implementation using the SF method. Based on the resulting root mean

The experimental evaluation of the proposed UKF-basedsquare error (RMSE) as summarized in Table 2, the
SF is performed in two trials, the results of which are shown estimation errors of the SF-based localization method are
in Fig. 8 and Fig. . In these figures, the red cross and bluesignificantly smaller than those based on single sensor data
circle marks denote the position of Train A and Train B, (both for individual train position estimation and in average).
respectively. It can be seen in these plots that the proposed hese results thus show that the the proposed UKF-based SF
UKF-based SF method effectively estimates the positions ofmethod has the potential to significantly improve the
both trains based on the encoder and RFID tags dataaccuracy of the train localization system. The obtained high
Furthermore, the proposed localization method accuratelyaccuracy localization result is clearly very beneficial to
shows that the distribution of each mark is more dense insupport the CBTC implementation under the MBS scheme.

each of the defined station, indicating that each train is TaABLE Il
slowing down and/or comes to a complete stop. RMSEVALUE OF THE TRAIN LOCALIZATION TASK.
Root Mean Square Error Value (cm)
Position of Train Miniature by Encoder Train Trial X_enc _enc X_ukf y_ukf
2T — A 1 3.2 7.6 0.5 0.8
1al PAPDO00-0-0-0- 8-S HFFHSSVOR | T:::’; 2 5.6 4.3 0.8 0.8
p 5 B 1 3.3 3.4 0.7 0.7
16| 2 3.4 4.7 0.6 0.8
il Average 3.9 5.0 0.7 0.8
12l B. Synchronization Control Implementation
£ The experimental evaluations of synchronization control
= 1 are conducted to compare the train operation performance
0.8 b under the FBS scheme and that under MBS scheme with
synchronization control. The results of these experiments are
061 shown in Fig. and Fig. 11 which plot the position-time
oal graphs of each train under the FBS and MBS schemes,
respectively, for one full lap of the track. Both graphs in
0.2 each of these figures essentially show the distance between
. , , , . , , . , , , the two trains in a signaling block.
O 02 04 06 08 1 12 14 16 18 2 It can be seen in these figures that the average inter-train
x(m) distance in the FBS scheme is about 162 cm, whereas the
Fig. 8 UKF-based SF implementation result (trial 1). inter-train distance in the MBS scheme that is equipped with

the proposed synchronization control approach is only about
72 cm. These results thus show that, compared to the FBS
scheme, the proposed MBS with synchronization control
approach can reduce the operational headway up to 56%.
These figures also show that the two trains in the MBS with
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synchronization control scheme only need about seven (7)Technology and Higher Education of the Republic of

seconds to complete one full track, whereas the FBS ondndonesia under the Fundamental

Research (PDUPT)

requires about 16 seconds to complete the same lap. Thesscheme 2018.

results thus clearly demonstrate the effectiveness of the
proposed MBS with synchronization control approach in
reducing both the train operational headway and travel time. [1]

Distance-Time Graph of FBS System Experiment

I Train A (Preceeding) 'J [2]
e Train B (Following)

5[ 1 [3]
i 1 [4]
£
@

s (5]
©

2r 1 [6]

1F J [71

(8]
0 2 4 6 8 10 12 14 16
time (s) [9]
Fig. 10 Position vs. time graph of two trains under FBS scheme.
5 Distance-Time Graph of MBS System Experiment []_0]
Train A (Preceeding)
Train B (Following) |
i ollowing) |
[11]
4 4
E [12]
L]
ea g
I
o [13]
2 -
; [14]
0 L | \ | \ [15]
0 1 2 3 4 5 6 T
time (s)
Fig. 11 Position vs. time graph of two trains under MBS scheme. [16]
IV. CONCLUSION
[17]

This paper has reported the experimental results that were
obtained when implementing a UKF-based SF approach forl18]
train localization and synchronization control of CBTC
system under the MBS scheme. The presented localization;g;
results showed that the developed UKF-based SF method
significantly improve the accuracy of the train position [20]
estimation. Furthermore, the experimental results of the[Zl]
MBS scheme implementation under the proposed
synchronization control approach successfully reduce the
train’s operational headways and travel time. These resultd22]
suggest that the SF-based synchronization control approacifbs]
has a promising potential to improve the performance of
CBTC systems.

(24]
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