

Vol.10 (2020) No. 3

ISSN: 2088-5334

Functional Size Measurement Tool-based Approach for Mobile Game
Nur Ida Aniza Ruslia,1, Nur Atiqah Sia Abdullaha,2

a Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
 E-mail: 1idaaniza@gmail.com; 2atiqah@tmsk.uitm.edu.my

Abstract— Nowadays, software effort estimation plays an important role in software project management due to its extensive use in
industry to monitor progress, and performance, determine overall productivity and assist in project planning. After the success of
methods such as IFPUG Function Point Analysis, MarkII Function Point Analysis, and COSMIC Full Function Points, several other
extension methods have been introduced to be adopted in software projects. Despite the efficiency in measuring the software cost,
software effort estimation, unfortunately, is facing several issues; it requires some knowledge, effort, and a significant amount of time
to conduct the measurement, thus slightly ruining the advantages of this approach. This paper demonstrates a functional size
measurement tool, named UML Point tool, that utilizes the concept of IFPUG Function Point Analysis directly to Unified Modeling
Language (UML) model. The tool allows the UML eXchange Format (UXF) file to decode the UML model of mobile game
requirement and extract the diagrams into component complexity, object interface complexity, and sequence diagram complexity,
according to the defined measurement rules. UML Point tool then automatically compute the functional size, effort, time, human
resources, and total development cost of mobile game. Besides, this paper also provides a simple case study to validate the tool. The
initial results proved that the tool could be useful to improve estimation accuracy for mobile game application development and found
to be reliable to be applied in the mobile game industry.

Keywords— software effort estimation; functional size measurement; automation tool; UML model; mobile game.

I. INTRODUCTION

Software effort estimation is crucial and remains one of
the challenging tasks in software engineering since the 1940s.
Rapid advances in software technology have shown the
growing size and complexity, which can lead to difficulties
for system analysts or project managers to predict the cost of
software development projects. Accurate cost estimation is
essential to both developers and customers. It can be
practically applied in the software industry to support
activities such as project planning, product monitoring and
control, and assessment of team performance [1], [2].

Since the early 1950s, software development practitioners
and researchers have been trying to develop methods to
estimate software cost and schedule. Functional Size
Measurement (FSM) is one of the methods in software cost
estimation by measuring the amount of functionality to be
delivered to obtain the project cost, project duration, and a
number of resources needed to complete the projects.

FSM is one of the widely used methods for measuring the
size of the estimated software system. Allan Albrecht
introduced FSM in 1979, and now it is kept updated by
International Function Point User Group Function Point
Analysis (IFPUG FPA) [3]. Then, several FSM methods
have emerged from IFPUG FPA to cope with recent

developments in software engineering such as Mark II FPA
[4], COSMIC FPA [5], NESMA FSM [6], and FiSMA FSM
[7].

There have been numerous researches on adapting the
FSM method to traditional software development such as 3D
Points [8], Feature Point [9], and Early Function Point [10].
Although different software effort estimation has been
proposed, the new software development demands a new
context of estimation model as the requirements, new
technology deployment, and methodology appeared to be
different. It thus resulted in being less accurate since it fails
to estimate some features in modern software systems [11],
[12].

UML Point is an extended function point method for
mobile game application technology by integrating the UML
framework into IFPUG FPA base components. The
utilization of both concept and method leads to the
transformation of the new set of procedures and
measurement rules to assist practitioners specifically in
mobile game development effort estimation. As almost all
measurement methods are conducted manually, it requires
both effort and time [13]. Therefore, the objective of this
paper is to show the implementation of the estimation tool
for UML Point. Namely, as UML Point for Mobile Game,
the tool will analyze the requirements from the UML model

993

and estimates underlying software costing for mobile game
applications.

A. Related Works

This section presents an overview of the existing
automation tool in the field of FSM. In Azzouz and Abran
[14], an estimation tool is proposed to generate functional
size for systems that are modeled in the Rational Unified
Process (RUP). The tool adopts the defined rules for
mapping the UML model to the concept of COSMIC FFP.
The detailed overview of the tool is presented, including the
main results, measurement results by the functional process,
and also measurement results by type of data movement. The
tool was verified using the Rice Cooker case study. However,
there are limitations mentioned in the paper, such as the
measurement scope must be identified manually, and the
tool has been not tested in the large scale of case studies.

µcROSE was introduced by Diab et al. [15], for
predicting the functional size of systems from Rational Rose
Real-Time (RRRT) models. The tool is principally
incorporating the mapping concept of RRRT models and
COSMIC FFP. The architecture of µcROSE generally
consists of three panels (three views of objects panel,
attributes list panel, and selected capsule panel) to extract the
RRRT model in XML format into COSMIC FFP
components. µcROSE has been verified in terms of
correctness and completeness with a different set of test
scenarios, but the results of the evaluation are not discussed
in detail in the paper.

While in Abrahao and Insfran [16], the authors proposed
an automation tool for counting the functional size from the
UML model. The tool named REST fully complies the
measurement concept in the previous work and measurement
concept of IFPUG FPA. The tool has been validated using
the Car Rental System case study, and the results obtained
by the tool were compared with the manual counting
performed by the experts.

Lind et al. [17] present the CompSize, a tool developed by
the authors that automatically estimate software code size.
The tool converts the information modeled using UML
Profile into COSMIC FFP based on the mapping rules
proposed in the previous work [18]. The tool has been
applied in a case study. Results from the case study were
compared with the measurement using the Saab method [19].

In De Souza et al. [20], the authors use the Experience
Service tool to estimate mobile software development
projects. The tool captures all information needed for
functional size measurement according to the measurement
concept of FiSMA. The system interface of the tool is
presented; however, no case study is provided in the paper,
and there is no further explanation regarding the validation
of the tool.

Our tool is different from the studies that were mentioned
here. We present an automation tool designed to be able to
estimate the effort and cost of mobile game application
development. As the input of the tool, we consider UML
model to be adapted in IFPUG measurement concept with
the help of mapping rules proposed in the previous work
[21].

B. Overview Of IFPUG FPA

The function point method or “Function Point Analysis
(FPA)” was developed by Allan J. Albrecht in the 1970s. It
was an attempt to overcome the difficulty of “lines of code
(LOC)” method and measures the software size from the end
user's perspectives. The method was initially published in
1979 and later in 1983. Refinement has been made in 1984
and in 1986 when Albrecht introduced “International
Function Point User Group (IFPUG)” as a standard in FPA.
The concept of IFPUG is the measuring system from the
amount of functionality required by the system. The
measurement procedure consists of five components;
Internal Logical File (ILF), External Interface File (EIF),
External Input (EI), External Output (EO) and External
Inquiry (EQ). ILF and EIF are identified as data function;
meanwhile, EI, EO, and EQ are defined as transaction
functions.

ILF is defined as a user identifiable group of logically
related information maintained within the boundary of the
application. The primary intent of an ILF is to hold data
maintained through one or more elementary processes of the
application being counted. An EIF is similar to ILF, but it is
maintained within the boundary of another application. Both
data function contributes to a number of function points that
depends on its complexity. The complexity of data function
is based on Data Element Type (DET) and Record Element
Type (RET) appeared in the data function. IFPUG define
DET as a unique user recognizable, non- recursive field on
the ILF or EIF; meanwhile, an RET is a user recognizable
subgroup of data elements within an ILF or EIF. Table I is
used to classify the complexity of ILF and EIF either it
having “low”, “average” or “high” complexity.

TABLE I
IFPUG FPA ILF/EIF COMPLEXITY

RET DET
1-19 20-50 51+

1 Low Low Average
2-5 Low Average High
5+ Average High High

Transaction function represents the functionality provided

to the user for the processing of data by an application. The
definition of External Input (EI), External Output (EO) and
External Inquiry (EQ) are described as follows:

• EI is defined as external input processes data or
control information that comes from outside the
application’s boundary. The external input itself is an
elementary process.

• EO is an elementary process that generates data or
control information sent outside the application
boundary.

• EQ is defined as an elementary process made up of
input-output combinations that result in data retrieval.
The output side contains no derived data. Here,
derived data is the data requires processing other than
direct retrieval and editing of information from ILF
and/or EIF. No ILF is maintained during processing.

For transaction function, the complexity of each function

is based on the number of DET and File Type Referenced

994

(FTR). An FTR can be an ILF or EIF; meanwhile, DETs of
transaction function is considered data that cross the
application boundary when the transaction is performed. The
weighting complexity of transaction function of EI, EO, and
EQ are shown in Table II and Table III respectively. Finally,
the IFPUG function point is obtained by giving the value to
five IFPUG components complexity as shown in Table IV.

TABLE II
IFPUG FPA EI COMPLEXITY

FTR DET
1-4 5-15 16+

1 Low Low Average
2 Low Average High

3+ Average High High

TABLE III
IFPUG FPA EO/EQ COMPLEXITY

FTR DET
1-5 6-19 20+

1 Low Low Average
2-3 Low Average High
4+ Average High High

TABLE IV
IFPUG FPA COMPLEXITY WEIGHT

IFPUG Low Average High
ILF 7 10 15
EIF 5 7 10
EI 3 4 6
EO 4 5 7
EQ 3 4 6

II. MATERIALS AND METHOD

This section presents an overview of proposed UML Point
method. The UML Point consists of two major steps; the
first step describes the generic design of UML model that
associate to mobile game architecture and the second step
summarizes the measurement rules to assemble the concept
of UML model into IFPUG FPA method.

A. UML Design

At the design level, four main models were used: use case
diagram, component diagram, class diagram and sequence
diagram. The center of UML Point method is the use case
diagram. It describes the high-level activities in the mobile
game. This method introduces specific stereotypes to
indicate basic element in a mobile game that can be
performed by use case actor. The stereotypes are described
as follow:

• «start»: Activities for player enter a new game; all
particular components are rendered in the application.
Player may get a set of instructions or tutorial before
start playing the game

• «inplay»: List of actions that can be taken during the
gameplay such as pause, resume or change setting.
Player may get rewards such as experience points or
items during the game

• «end»: Activities to end the current level or terminate
the application. All displayed characters are destroyed

Component diagram is often used to model a complex
system. It manages the complex functionalities of a system

by decomposing it into smaller parts. At this stage, all actors
appeared in the use case diagram are visualized or
transformed into the component and further categorized into
proposed stereotypes. The stereotypes of the component
diagram are purposely to categorize the main service of a
component and it described as follow:

• «user»: Player of the game. It can be single player or
multiplayer

• «UI»: A medium to display the game objects, game
scene and control the interaction process

• «library»: Mobile game assets such as animations,
physics or network

• «executionObject»: Describes the static and dynamic
game objects. It describes set of characteristics,
behaviours or actions to be performed

• «storage»: Handling the data of the game such as
properties, game items or score points. It can be local
database or external storage

• «executionEnvironment»: Targeted platform or
devices

Component interface is a generic way to link the

interactions among the component diagram. At this step, the
component interface or introduced it as object interface is
implemented in a class diagram way in order to describe
functionality that should be provided. Stereotyped as
«interface», the implementation of object interface, however,
is different from class diagram as it only includes operations
that can be used by other components.

The concept of class diagram is used to represent the core
concept or internal structure of a component. It is useful in
presenting the detail requirement of a component such as
game characters, input control or game mechanics. Class
diagram allows the developer to enhance the idea during the
design process and capture potential features as much as
possible to support the core gameplay. The characteristic of
the class diagram may result to share similar elements of
functionalities. Therefore, class diagram relationships
(generalization/inheritance, association, aggregation, and
composition) are included as part of the process to form the
application structure.

Sequence diagram is designed purposely to summarize the
internal interaction between objects. Several sequence
diagrams should be modeled to depict all possible behavior
of a system. To visualize the complete interactions, sequence
diagrams usually developed from the context of use case
scenarios. Therefore, from the mentioned use cases, at least
the mobile game consists of three sequence diagrams;
sequence diagram for «start» activity, a sequence diagram
for «inplay» activity and sequence diagram for «end»
activity.

B. Measurement Rules

To implement the UML design, we proposed three-step
measurement procedure, which can be mapped in IFPUG
FPA complexity. The measurement steps are described as
follow:

• Count data function for Component Diagram
• Count data function for Object Interface
• Count transaction function for Sequence Diagram

995

In the IFPUG FPA method, the data function is divided
into internal logical file (ILF) and external interface file
(EIF). ILF file is defined by logical file that are maintained
by the application; meanwhile, EIF file are those referenced
by the application but maintained by other applications. In
our method, the proposed stereotype in component diagram
is used to differentiate the data function. A set of rules to
categorized ILF and EIF is describes as follow:

• Rule 1: Every component diagram become a candidate
of data function

• Rule 2: Accept each of «user» data function as EIF
• Rule 3: Accept each of «UI» data function as ILF
• Rule 4: Accept each of «library» data function as EIF
• Rule 5: Accept each of «executionObject» data

function as ILF
• Rule 6: Accept each of «storage» data function as ILF

or EIF. Internal storage is accepted as ILF and
external storage is accepted as EIF

• Rule 7: Accept each of «executionEnvironment» data
function as EIF

The complexity of ILF and EIF are evaluated by counting
the number of DET and RET appeared in both data functions.
As an internal part of the component, a structured class
diagram is used to identify the complexity for both ILF and
EIF data functions. Therefore, the number of DET and RET
can be classified by using the following rules:

• Rule 8: Count RET and DET as one for component
that does not contain any class(es)

• Rule 9: If component contains class(es) and there are
no relations (generalization, association, aggregation
or composition) between classes, the RET is counted
as 1 to each class(es)

• Rule 10: If generalization relation connects two
classes, the RET is counted as subclass only

• Rule 11: If association relation connects two classes,
the RET is counted as both superclass and subclass

• Rule 12: If aggregation relation connects two classes,
the RET is counted as both superclass and subclass

• Rule 13: If composition relation connects two classes,
the RET is counted as superclass only

• Rule 14: Count DET to each non-repeated attribute in
class diagram

To avoid tight coupling counting between component
diagram and object interface, object interface has also
become a candidate to the data functions. The ILF and EIF
rules of object interface are immediate:

• Rule 15: Every object interface is mapped each of
object interface into logical file

• Rule 16: Accept each of object interface(s) belongs to
«user» and counted as EIF

• Rule 17: Accept each of object interface(s) belongs to
«UI» and counted as ILF

• Rule 18: Accept each of object interface(s) belongs to
«library» and counted as EIF

• Rule 19: Accept each of object interface(s) belongs to
«executionObject» and counted as ILF

• Rule 20: Accept each of object interface(s) belongs to
«storage» and counted as ILF or EIF

• Rule 21: Accept each of object interface(s) belongs to
«executionEnvironment» and counted as EIF

Both of ILF and EIF object interface then need to be rated
as low, average or high complexity by identifying the
number of RET and DET that captured in object interface.
The RET and DET of object interface are based on the
following rules:

• Rule 22: Count RET as 1 to each object interface
• Rule 23: Count DET to each non-repeated attributes in

object interface
In counting the transaction functions, the measurement

process is captured from the sequence diagram; considering
the proposed UML use case diagram does not provide
sufficient information to complete the sizing process using
IFPUG FPA base components. Each of «start», «inplay» and
«end» use cases are transformed into sequence diagram and
become a candidate for transaction function.

To count the transaction function, we provide mapping
rules for UML sequence diagram to be applied in the IFPUG
FPA transaction functions components. The rules are
described as follow:

• Rule 24: Every «start», «inplay» and «end» use cases
become a candidate of transaction function

• Rule 25: Accept each of «start» transaction as EI
• Rule 26: Accept each of «inplay» transaction as EI,

EO or EQ
• Rule 27: Accept each of «end» transaction as EO

Counting the EI, EO, and EQ complexity is very simple;
the adjustment is based on the number of file type referenced
(FTR) and DET that appear in the sequence diagram. The
proposed rules of FTR and DET are described as follow:

• Rule 28: FTR is counted from ILF and EIF of object
interface that appears in the sequence

• Rule 29: Count DET to each message between FTR

III. RESULT SAND DISCUSSION

With the respect of using UML framework, the proposed
tool requires the user to sketch the requirements in UML tool.
UMLet is an open-source tool, contains several
characteristics and a significant portion that are useful for
object orientation. UMLet saves the project file in UXF
format, which is flexible to encode the design and decode it
in any medium conversion including UML Point for Mobile
Game tool.

This section provides a case study to demonstrate the
measurement tool. The Intrinsic Game is a 2D battle game
style which was designed to be played on iPad. The
requirement of the game is modeled in UML as mentioned in
the previous guidelines using UMLet tool. The UXF files of
Intrinsic Game are then imported into the software tool.

The main interface of the tool consists of IFPUG Data
Function and IFPUG Transaction Function tab window. Fig.
1 shows the first tab of the tool. The measurement process
starts with user upload of the UXF file of UML component
diagram into the application. The user needs to choose
appropriate stereotypes associated with the uploaded file in
order to make the tool accurately differentiate the file into
ILF or EIF.

996

Fig. 1 IFPUG Data Function Counting Process

The tool then extracts the file between component

diagrams and object interface and automatically calculates
the file in both data function (data function for the
component diagram and data function for object interface).
The user can view the number of DET, RET and function
point from the respective file after clicking the button the
Add File as seen in Fig. 1.

Fig. 1 also shows a list of data function in component
diagram and data function in object interface for The
Intrinsic Game; results show the game have 84fp for total
component diagram complexity and 36fp for total object
interface complexity.

Fig. 2 IFPUG Transaction Function Counting Process

Fig. 2 shows a screenshot of second window tab; IFPUG

Transaction Function window tab provides a similar
process in the first tab, it requires the user to upload the
sequence diagram file in UXF format. The user needs to
select enter the name of the file and select the stereotype
and transaction type associated with the uploaded file in
order to obtain accurate function point. The tool then
reports the number of FTR, DET and function point for

each sequence diagram file. The Intrinsic Game is
estimated to have 33fp for total sequence diagram
complexity as shown in Fig. 2. Fig. 3 shows the summary
result for The Intrinsic Game. The tool calculates the total
of three complexities (total complexity for the component
diagram, object interface, and sequence diagram) and The
Intrinsic Game is estimated to have 153fp, which match the
manual counting as mentioned in previous work [21].

997

Fig. 3 Function Point Count and Total Software Cost

The total software cost is obtained after the user enters

the duration. This is subject to complete project and salary
rate for one programmer. As shown in Fig. 3, The Intrinsic
Game is estimated to cost around RM48,000 for six
months of development time.

IV. CONCLUSION

This paper aims to present UML Point for Mobile Game,
an estimation tool that supports function point counting
from the UML design. The tool helps in calculating the
functional size of the mobile game from the user
requirement, which can further be used to estimate the
effort and cost of mobile game application development.
The tool reflects the procedure of UML Point counting
process by mapping the IFPUG FPA concept to UML
model and extracts the counting process in three factors;
UXF. Results from the case study have shown that the
proposed tool can be applied in the mobile game industry.
However, various case studies should be conducted to
validate the proposed tool.

ACKNOWLEDGMENT

The authors express appreciation to Faculty of Computer
and Mathematical Sciences, Universiti Teknologi MARA
and MOHE Grant (FRGS/1/2018/ICT04/UITM/02/9) for
sponsoring this paper.

REFERENCES
[1] O. J. Klakegg and S. Lichtenberg, “Successive cost estimation-

successful budgeting of major projects,” in Procedia-Social and
Behavioral Sciences, 2016, 226, pp. 176-183.

[2] A. Ismail and V. Cardellini, “Towards self-adaptation planning for
complex service-based systems,” in International Conference on
Service-Oriented Computing, Springer, 2013, pp. 432-444.

[3] ISO/IEC 20926, “Software Engineering – IFPUG 4.1 Unadjusted
Functional Size Measurement Method – Counting Practices
Manual,” in International Organization for Standardization,
Geneva, 2003.

[4] ISO/IEC 20968, “Software Engineering – MkII Function Point
Analysis – Counting Practices Manual,” in International
Organization for Standardization, 2002.

[5] ISO/IEC 19761, “Software Engineering – COSMIC Full Function
Point Measurement Manual,” v.2.2, 2003.

[6] ISO/IEC 24570, “Software Engineering – NESMA Functional Size
Measurement Method, v.2.1 – Definitions and Counting Guidelines

for the Application of Function Point Analysis,” in International
Organization for Standardization – ISO, Geneva, 2005.

[7] P. Forselius, “Finnish Software Measurement Association
Functional Size,” in Finnish Software Metrics Association, Finland,
2004.

[8] S.A. Whitmire, “3D Function Points: Scientific and Real-time
Extensions to Function Points,” in Proceedings of the Pacific
Northwest Software Quality Conference, 1992.

[9] T.C. Jones, “A Short History of Function Points and Feature
Points,” in Software Productivity Research Inc., USA, 1987.

[10] R. Meli, “Early and Extended Function Points: A New Method for
Function Points Estimation,” in Proceedings of IFPUG-FALL
Conference, Scottsdale, Arizona, 1997.

[11] L.S. De Souza and G.S De Aquino Jr, “Estimating the Effort of
Mobile Application Development,” in Proceedings of Second
International Conference on Computational Science and
Engineering, 2014, pp. 45-63.

[12] M.M. Rosli, N.H.I Teoh, N.S.M. Yusop and N.S. Mohamad, “Fault
prediction model for web application using genetic algorithm,” in
International Conference on Computer and Software Modeling
(IPCSIT), 14, 2011, pp. 71-77.

[13] M. Adnan and M. Afzal, “Ontology based multiagent effort
estimation system for scrum agile method,” in IEEE Access, 2017,
vol. 5, pp. 25993-26005.

[14] S. Azzouz and A. Abran, “A proposed measurement role in the
rational unified process and its implementation with ISO 19761:
COSMIC-FFP,” in Software Measurement European Forum, Rome,
Italy, 2004.

[15] H. Diab, F. Koukane, M. Frappier and R. St-Denis, “µcROSE:
Functional Size Measurement for Rational Rose RealTime,” 2002.

[16] S. Abrahao and E. Insfran, “A metamodeling approach to estimate
software size from requirements specifications,” in Software
Engineering and Advanced Applications, 2008. SEAA'08. 34th
Euromicro Conference, IEEE, 2008, pp. 465-475.

[17] K. Lind, R. Heldal, T. Harutyunyan and T. Heimdahl, “CompSize:
Automated size estimation of embedded software components,” in
Software Measurement, 2011 Joint Conference of the 21st Int'l
Workshop on and 6th Int'l Conference on Software Process and
Product Measurement (IWSM-MENSURA), IEEE, 2011, pp. 86-95.

[18] K. Lind and R. Heldal, “A model-based and automated approach to
size estimation of embedded software components,” in
International Conference on Model Driven Engineering Languages
and Systems, Springer, Berlin, Heidelberg, 2011, pp. 334-348.

[19] R. Baillargeon and R. Flores, “From Algorithms to Software – A
Practical Approach to Model-Driven Design,” SAE Technical
Paper, 2007-01-1622, 2007.

[20] L.S. De Souza and G.S. De Aquino Jr, “Estimating the Effort of
Mobile Application Development,” in Proceedings of Second
International Conference on Computational Science and
Engineering, 2014, pp 45-63.

[21] N.I.A. Rusli and N.A.S. Abdullah, “UML Point for Mobile Game
A Measurement Method for Sizing Mobile Game Design,” in
Journal of Engineering and Applied Sciences, 12(3), 2017, pp. 481-
487.

 998

