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Abstract— This paper presents a hybrid algorithm to solve the Quadratic Assignment Problem (QAP). The proposed algorithm 

involves using the Greedy Randomized Adaptive Search Procedure (GRASP) to obtain an initial solution, and then using a combined 

Simulated Annealing (SA) and Tabu Search (TS) algorithm to improve the solution. Experimental results indicate that the hybrid 

algorithm is able to obtain good quality solutions for QAPLIB test problems within reasonable computation time.  
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I. INTRODUCTION 

The Quadratic Assignment Problem (QAP) is identified as 

the problem of finding a minimum cost allocation of 

facilities into locations, with the costs being the sum of all 

possible distance-flow products [1]. It is a combinatorial 

optimization problem that is first stated by Koopmans and 

Beckmann [2]. This problem belongs to the class of NP-hard 

problems and there is no ε–approximation algorithm for the 

QAP unless P=NP [3].  

Some of the recent surveys of the QAP in the literature 

were presented by Anstreicher [4], Drezner et al. [5] and 

Loiola et al. [1]. There are many practical problems that can 

be formulated as a QAP, such as problems dealing with 

backboard wiring [6], campus layout [7], hospital planning 

[8], scheduling [9] and turbine balancing [10]. The QAP can 

also be formulated in different ways, such as pure integer 

programming formulations [11,12,13], mixed integer linear 

programming formulations [14,15], trace formulations 

[16,17], graph formulations [18,19] and permutation 

problems [20,21]. 

Both exact and heuristic methods have been used to solve 

the QAP. Exact algorithms, which include the branch-and-

bound, dynamic programming and cutting plane techniques, 

can only be used to solve small-size instances of the problem. 

Thus, many heuristics have been proposed by researchers to 

find optimal or near optimal solutions for the QAP. These 

heuristics range from simple iterative improvement 

procedures to metaheuristic implementations, such as Ant 

Colony Optimization [22,23], Genetic Algorithm [20,24,25], 

Tabu Search [21,26] and Simulated Annealing [13,27,28]. 

Loiola et al. [1] highlighted the development of hybrid 

algorithms for solving the QAP. These hybrid algorithms for 

the QAP include a combination of Tabu Search with 

Simulated Annealing as presented by Misevicius [29], while 

Youssef et al. [30] used Tabu Search, Simulated Annealing 

and fuzzy logic together to solve the QAP. 

This paper presents a new hybrid metaheuristic for the 

QAP. It involves three different algorithms: GRASP (Greedy 

Randomized Adaptive Search Procedure), Simulated 

Annealing (SA) and Tabu Search (TS). An extensive 

computational testing of this hybrid metaheuristic has been 

carried out with the benchmark instances in the QAPLIB, a 

well-known library of QAP instance [31].  

The rest of this paper is organized as follows. In Section 

II, we provide a description of the problems considered in 

this paper. In Section III, the proposed hybrid algorithm is 

explained in detail. The computational results of applying 

the hybrid algorithm are presented in Section IV, and some 

concluding remarks are provided in Section V. 
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II. PROBLEM DESCRIPTION 

The QAP can be described as the assignment of n 

facilities to n different locations. Given two n × n matrices, 

F = [fij] and D = [dkl], where fij is the flow between facilities 

i and j and dkl is the distance between locations k and l, the 

problem can be formulated as follows [1]:  

Minimize    
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The objective function represents the total cost of 

assignment of all facilities to all locations, which is the 

product of the flow between facilities i and j and the 

distance between locations k and l. The constraints ensure 

that exactly n facilities are to be assigned to exactly n 

locations. 

The QAP can also be represented as a permutation 

problem. Let fij be the flow between facilities i and j and 

   jπiπd  be the distance between locations  iπ  and  jπ . 

The QAP problem then becomes: 
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where  nΠ  is the set of all permutations of integers {1, 2, 

…, n}.  

In this paper, a solution to the QAP is represented by the 

vector:         nπ,,π,π,ππ 321 , where the element   kiπ 
 

denotes that facility i is assigned to location k. 

III. THE PROPOSED ALGORITHM 

The hybrid algorithm proposed in this paper comprises of 

two main phases: (1) construction, and (2) improvement. 

The GRASP algorithm is used to initialize a solution in the 

first phase, while a combined SA and TS (Algorithm SA-TS) 

is used to improve the solution in the second phase. Each 

phase is presented and described in detail below. 

A. Construction Phase 

In the construction phase, we build an initial solution by 

implementing part of the Greedy Randomized Adaptive 

Search Procedure (GRASP). The GRASP is a metaheuristic 

that combines constructive heuristics and local search [32]. 

It comprises of the two steps: solution construction and 

solution improvement. 

In the first step, we construct an initial solution by adding 

one new element at a time. The process selection is initially 

started by building the candidate list, called restricted 

candidate list. An element is then picked randomly from the 

list. In our implementation, we only consider the first 

process to construct an initial solution. The construction 

process of GRASP is shown in Figure 1.  
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sort them in increasing order and keep the smallest 

  nnγβ 2

 
elements as the candidate list, where γ

 
is the 

second candidate restriction parameter  10  γ . 

(4) Select two elements from the candidate list randomly. 

(5) Calculate ikC , the cost of assigning facility i to location k, 

with respect to the already-made assignments, Γ : 

 




Γlj,

klijik dfC

 

where       rr l,j,,l,j,l,jΓ ~~2211   

(6) Set o = the number of unassigned facilities 

(7) Determine the  γo
 
facility-location pairs having the 

smallest ikC
 
values. 

(8) Select a facility-location pair  ki,  randomly from the list 

generated in Step 7. 

(9) Update the set  ki,ΓΓ   

(10) Set 1 oo  

(11) Repeat Steps 5 – 10 until o = 0 
 

Fig. 1  GRASP Algorithm 

B. Improvement Phase 

The initial solution generated by GRASP, initial_sol, is 

then improved in the improvement phase. The algorithm 

applied in this phase is a combined SA and TS algorithm 

(Algorithm SA-TS). While it is mainly based on Simulated 

Annealing [33], the main difference of the standard SA and 

the proposed SA lies in the additional elements or strategies 

added. Several features from Tabu Search, such as the tabu 

length, tabu list and the intensification strategy are 

incorporated in the algorithm for further improvement 

[34,35]. 

In order to improve the solution, a local search algorithm 

involving a partial sequential neighborhood search is also 

augmented. The basic idea of the search is to swap or 

exchange the locations of two facilities such that a better 

solution is derived. Assuming that 0 jjii ff , the objective 

function difference  jπ,i,Δ  obtained by exchanging facilities 

 iπ  and  jπ  can be computed in  n
 
operations, using the 

following equation [36]:  
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If both matrices F and D are symmetric with a zero 

diagonal, the formula can be simplified as follows:  

 

  ji,π,Δ                  



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n

ji,a
a

jπaπiπaπajiπaπjπaπai ddfddf
1

2  (7) 

Instead of selecting two facilities randomly as was 

commonly done in SA, we start by selecting one facility i 

randomly followed by examining all other potential pair-

swaps sequentially in the order   ij:ji,  . The selected move 

is the one with the best  ji,π,Δ  value. The new permutation is 

then evaluated by the acceptance-rejection procedure in SA. 

The tabu list contains pairs (i, j) that have been visited in 

the last length iterations. For a given iteration, if a pair (i, j) 

belongs to the tabu list, it is not allowed to accept the 

exchange of facilities i and j, unless this exchange gives an 

objective function value strictly better than the previous one 

(aspiration level criteria). At any temperature T, the 

neighborhood search is repeated until a certain number of 

iterations, inner_loop, has been performed.  

The details of this procedure are summarized in Figure 2. 

If there is no improvement of the solution obtained within a 

certain number of iterations (limit), we apply an 

intensification strategy of Tabu Search. This strategy focuses 

the search once again starting from the best permutation 

obtained. Finally, the entire algorithm will be terminated if 

the total number of iterations of the outer loop reaches the 

preset maximum number of iterations, outer_loop. 

 
Algorithm SA-TS ( ) 
(1) Initialize the parameters 

(2) Set the best solution, best_sol = initial_sol 

(3) Set the current solution, current_sol = initial_sol 
(4) Set the total number of iterations, num_iter = 0 

(5) Set the total number of iterations without improvement,no_improv = 0 

(6) While the total number of iterations, num_iter is less than the preset 
maximum number of iterations, outer_loop do: 

(7)   Repeat inner_loop times: 

(8)    Select a facility i randomly 
(9)    Apply a partial sequential neighborhood search 

(10)   Find the best permutation    with the smallest value of      

 ji,,πΔ   

(11)   Check whether the best permutation is tabu or not  

(12)    If  ji,,πΔ   < 0 

(13)     Update the current solution, current_sol 

(14)      If current_sol is better than best_sol 
(15)      Update the best solution, best _sol = current_sol 

(16)    Update tabu list 

(17)    Else 

(18)    Choose a random number r uniformly from [0,1] 

(19)     no_improv := no_improv + 1 

(20)     If 
  num_iter

expr
/Tji,,πΔ 

  and the new solution is not tabu 

(21)      Accept the new solution, new_sol 

(22)     Update the current solution, current_sol 

(23)     Update tabu list 

(24)     Else 

(25)      Return to the current solution, current_sol 

(26)     Update tabu list 

(27)   Update temperature num_iternum_iter αT:T   

(28)   If (no_improv > limit) 
(29)    Apply the intensification strategy 
(30)    Set no_improv := 0 

(31)   num_iter := num_iter +1 

(32) End while 

(33) Report the best solution, best_sol 

 
Fig. 2 Algorithm SA-TS 

IV. COMPUTATIONAL RESULTS 

A. Experimental Setup 

The values of the parameters used in the computational 

experiments are determined experimentally to ensure a 

compromise between the computation time and the solution 

quality. They are summarized in Table I. The algorithms 

were implemented using C++ and executed on a 2.67 GHz 

Intel Core 2 Duo CPU with 3 GB of RAM under the 

Microsoft Windows Vista Operating System. 

TABLE I 
PARAMETER SETTINGS 

Parameter Value 

Maximum number of iterations, outer_loop 300n 

Initial temperature, T0 5,000 

Number of neighborhood moves at each 
temperature T, inner_loop 

100n 

Cooling factor, α 0.9 

Number of non-improvement iterations prior to 

intensification, Limit 
0.02outer_loop 

Length of tabu list, length n/2 

B. Results 

In order to evaluate the performance of our proposed 

algorithm, we decided to solve some benchmark problems 

from a library for research on the QAP (QAPLIB) which 

have been studied and solved by other researchers [31]. For 

each benchmark problem, the proposed algorithm was 

executed 20 times with different random seeds. 

According to [37], the instances of QAPLIB can be 

classified into four classes: unstructured (randomly 

generated) instances, grid-based distance matrix and real-life 

instances and real-life-like instances. Due to the limitation of 

the target algorithm that can only solve symmetric instances 

with zero diagonal values, we only focus on some instances 

from three classes: unstructured (randomly generated) 

instances, grid-based distance matrix and real-life instances. 

Table II presents the instances selected from each class.  

TABLE II 

PROBLEM INSTANCES 

Class Instances 

I unstructured (randomly generated) instances had, rou, tai  

II grid-based distance matrix nug, scr, sko 

II real-life instances chr, kra 

 

The following tables summarize the average objective 

function value obtained and the best objective function value 

obtained for each class. The objective function values of the 

optimal/best known solutions given in Burkard et al. [31] are 

also presented for comparison purposes. The heading Φ1 

refers to the percentage deviation between the average 

objective function value of the solutions obtained and the 

best known/optimal solution, while the heading Φ2 refers to 

the percentage deviation between the best objective function 

value of the solutions obtained and the best known/optimal 

solution. The values for Φ1 and Φ2 are computed as follows:  













 


solmalknown/optibest

algorithmofvaluefunctionobjectiveaveragesolmalknown/optibest
100Φ1

 

(8) 













 


solmalknown/optibest

algorithmofvaluefunctionobjectivebestsolmalknown/optibest
100Φ2

 

(9) 

Table III, IV and V summarize the computational results 

of problem instances in the first class. From Table III, we 
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notice that the average gaps of the solutions are less than or 

equal to 0.40%. For each problem instance, the hybrid 

algorithm is again able to obtain the best known/optimal 

solutions. The value of Φ1 is not more than 0.03% for rou 

problem instances (Table IV). 

As shown in Table V, for the tai type benchmarks, the 

performance of the proposed algorithm is still acceptable 

with values of Φ1 and Φ2 are not more than 3.72% and 

3.58%, respectively. For larger problem instances (with n > 

20), the best known/optimal solutions cannot be found. It is 

likely that with greater number of iterations, the outcome 

may improve with possibility of obtaining the best 

known/optimal solutions for some of instances. 

TABLE III  

COMPUTATIONAL RESULTS FOR had PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known 
solution 

Average 

Solution 

Best 

Solution 

Φ1 

(%) 

Φ2 

(%) 

had12 1652 1652 1652 0.00 0.00 

had14 2724 2735 2724 0.40 0.00 

had16 3720 3721 3720 0.03 0.00 

had18 5358 5358 5358 0.00 0.00 

had20 6922 6927.2 6922 0.08 0.00 

TABLE IV 

COMPUTATIONAL RESULTS FOR rou PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 
known 

solution 

Average 

Solution 

Best 

Solution 

Φ1 

(%) 

Φ2 

(%) 

rou12 235528 235528 235528 0.00 0.00 

rou15 354210 354210 354210 0.00 0.00 

rou20 725522 725742.7 725522 0.03 0.00 

TABLE V 

COMPUTATIONAL RESULTS FOR tai PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known 
solution 

Average 

Solution 

Best 

Solution 

Φ1 

(%) 

Φ2 

(%) 

tai10a 135028 135028 135028 0.00 0.00 

tai12a 224416 224416 224416 0.00 0.00 

tai15a 388214 388214 388214 0.00 0.00 

tai17a 491812 491812 491812 0.00 0.00 

tai20a 703482 704610.2 703482 0.16 0.00 

tai25a 1167256 1182462.3 1175490 1.30 0.71 

tai30a 1818146 1845611.7 1833020 1.51 0.82 

tai35a 2422002 2484348.1 2477054 2.57 2.27 

tai40a 3139370 3228315.1 3207852 2.83 2.18 

tai50a 4938796 5122386.6 5115612 3.72 3.58 

tai60a 7205962 7463484.2 7417240 3.57 2.93 

tai80a 13515450 13997867.4 13938662 3.57 3.13 

tai100a 21054656 21788679.9 21689698 3.49 3.02 

 

The computational results for the second class (grid-based 

distance matrix) are summarized in Tables VI, VII and VIII. 

Table VI is a summary of the results for the nug problem 

instances. The results indicate that these problem instances 

do not pose much difficulty for the proposed hybrid 

algorithm to obtain good solutions as the values of Φ1 are 

not more than 0.02%. All the best known/optimal solutions 

can be obtained within reasonable computation time, with 

the optimal solution to the largest problem instance, nug30, 

being obtained within 15 minutes. 

Tables VII and VIII show the results of testing on scr and 

sko problem instances. The values of Φ1 are 0% for scr 

problem instances, while the maximum value of Φ1 is only 

0.18% for sko problem instances. For sko49 and sko56, the 

values of Φ2 are about 0.1% from the optimal/best known 

solution. The longest CPU time required to obtain the 

solution is about 3 hours for sko56. 

TABLE VI 

COMPUTATIONAL RESULTS FOR nug PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 
known 

solution 

Average 

Solution 

Best 

Solution 

Φ1 

(%) 

Φ2 

(%) 

nug12 578 578 578 0.00 0.00 

nug14 1014 1014 1014 0.00 0.00 

nug15 1150 1150 1150 0.00 0.00 

nug20 2570 2570 2570 0.00 0.00 

nug21 2438 2438 2438 0.00 0.00 

nug22 3596 3596 3596 0.00 0.00 

nug24 3488 3488 3488 0.00 0.00 

nug25 3744 3744 3744 0.00 0.00 

nug27 5234 5234 5234 0.00 0.00 

nug28 5166 5166.9 5166 0.02 0.00 

nug30 6124 6124.4 6124 0.01 0.00 

TABLE VII 

COMPUTATIONAL RESULTS FOR scr PROBLEM INSTANCES 

Benchmark 
problem 

Optimal/Best 

known 

solution 

Average 
Solution 

Best 
Solution 

Φ1 
(%) 

Φ2 
(%) 

scr12 31410 31410 31410 0.00 0.00 

scr15 51140 51140 51140 0.00 0.00 

scr20 110030 110030 110030 0.00 0.00 

TABLE VIII 

COMPUTATIONAL RESULTS FOR sko PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 
known 

solution 

Average 

Solution 

Best 

Solution 

Φ1 

(%) 

Φ2 

(%) 

sko42 15812 15833.8 15812 0.14 0.00 

sko49 23386 23424.5 23410 0.16 0.10 

sko56 34458 34520.4 34494 0.18 0.10 

TABLE IX 

COMPUTATIONAL RESULTS FOR chr PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 
known 

solution 

Average 

Solution 

Best 

Solution 

Φ1 

(%) 

Φ2 

(%) 

chr12a 9552 9552 9552 0.00 0.00 

chr12b 9742 9742 9742 0.00 0.00 

chr12c 11156 11156 11156 0.00 0.00 

chr15a 9896 9896 9896 0.00 0.00 

chr15b 7990 7990 7990 0.00 0.00 

chr15c 9504 9504 9504 0.00 0.00 

chr18a 11098 11098 11098 0.00 0.00 

chr18b 1534 1534 1534 0.00 0.00 

chr20a 2192 2224.9 2192 1.50 0.00 

chr20b 2298 2306.7 2298 0.38 0.00 

chr20c 14142 14142 14142 0.00 0.00 

chr22a 6156 6181.3 6156 0.41 0.00 

chr22b 6194 6265.2 6194 1.15 0.00 

chr25a 3796 3811 3796 0.40 0.00 

TABLE X 

COMPUTATIONAL RESULTS FOR kra PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known 
solution 

Average 

Solution 

Best 

Solution 

Φ1 

(%) 

Φ2 

(%) 

kra30a 88900 89554.5 88900 0.74 0.00 

kra30b 91420 91420 91420 0.00 0.00 

kra32 88700 88700 88700 0.00 0.00 

 

Finally, Table IX and X summarize the results of testing 

on the third class (real-life instances). Table IX summarizes 

the computational results for chr problem instances. The 
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difficulty level in solving the chr problem instances is 

considered significant [25]. On the whole, the proposed 

hybrid algorithm is able to find solutions with values of Φ1 

not exceeding 1.50% from the known optimum. For all 

problem instances, the best known/optimal solutions are also 

obtained. 

Tables X summarizes the results of testing on kra problem 

instances. The average gaps of the solutions are less than 

0.75%. For each problem instance, the hybrid algorithm is 

again able to obtain the best known/optimal solutions. 

In summary, we observe that the proposed hybrid 

algorithm is able to obtain very good or optimal solutions to 

benchmark problem instances drawn from the QAPLIB. The 

computation time required to do so is also reasonable 

especially for problem instances with modest size. 

V. CONCLUSIONS 

In this paper, a hybrid algorithm that combines GRASP, 

Simulated Annealing and Tabu Search is proposed to solve 

the QAP. The proposed algorithm for solving the QAP is 

able to obtain the optimal or best known solutions for 

problem instances drawn from the QAPLIB.  

There are several issues for future research. First,  in the 

proposed hybrid algorithm, the Tabu Search framework has 

been designed primarily with short term memory. As part of 

future research work, the possibility of implementing other 

Tabu Search strategies, such as long term memory and 

diversification strategy, within the hybrid algorithm will be 

considered. Second, different types of hybridization with 

other metaheuristics, such as the genetic algorithm and ant 

colony optimization algorithm, can also be investigated. 

Third, the application of the proposed hybrid algorithm to 

solve other optimization problems is another area of future 

research, such as Quadratic Semi Assignment Problem 

(QSAP). 
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